An analytical method for the impact force of a cubic rock boulder colliding onto a rigid barrier

2022 ◽  
Author(s):  
Gang Luo ◽  
Yongjie Zhao ◽  
Weigang Shen ◽  
Maolin Wu
2019 ◽  
Vol 56 (9) ◽  
pp. 1215-1224 ◽  
Author(s):  
C.W.W. Ng ◽  
C.E. Choi ◽  
D.K.H. Cheung ◽  
Y. Cui

Bi-dispersity is a prerequisite for grain-size segregation, which transports the largest particles to the flow front. These large and inertial particles can fragment upon impacting a barrier. The amount of fragmentation during impact strongly influences the force exerted on a rigid barrier. Centrifuge modelling was adopted to replicate the stresses for studying the effects of bi-dispersity in a granular assembly and dynamic fragmentation on the impact force exerted on a model rigid barrier. To study the effects of bi-dispersity, the ratio between the diameters of small and large particles (δs/δl), characterizing the particle-size distribution (PSD), was varied as 0.08, 0.26, and 0.56. The volume fraction of the large particles was kept constant. A δs/δl tending towards unity characterizes inertial flow that exerts sharp impulses, and a diminishing δs/δl characterizes the progressive attenuation of these sharp impulses by the small particles. Flows dominated by grain-contact stresses (δs/δl < 0.26), as characterized by the Savage number, are effective at attenuating dispersive stresses of the large particles, which are responsible for reducing dynamic fragmentation. By contrast, flows dominated by grain-inertial stresses (δs/δl > 0.26) exhibit up to 66% more impulses and 4.3 times more fragmentation. Dynamic fragmentation of bi-disperse flows impacting a rigid barrier can dissipate about 30% of the total flow energy.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3228
Author(s):  
Bei Zhang ◽  
Yu Huang ◽  
Ping Lu ◽  
Chunxiang Li

The debris–barrier interaction issue has gained considerable attention among the engineering community, but most researches have only focused on the single-surge impact condition, with the multiple-surge impact mechanism still lacking clarity. However, multiple-surge impact is more typical in the field. Thus, we conduct some numerical simulations based on the discrete element method (DEM) and present a series of results that provide preliminary insights into the multiple-surge impact mechanism. The DEM model is firstly calibrated using physical experimental results and then used to investigate the flow kinematics, impact dynamics and energy evolution of the successive impact process. The results indicate that compared with single-surge conditions, the barrier is safer under multiple-surge impact as the deposition spreading distance is extended by 6–20% and the impact force is reduced by 6–30%. The dead zone formed by the previous surge behaves as a cushioning layer and a medium for momentum transfer. Three mechanisms of energy dissipation during surge–dead-zone interactions were identified: friction and penetration at the interaction face between the surge and dead zone, inelastic deformation of the dead zone, and inter-particle interaction within the surge. Each component was analyzed, which shows that inter-particle collision friction accounts for over 60% of the total energy loss during surge–dead-zone interaction. In addition, the performance of granular jump theory in predicting the multiple-surge impact force is assessed, and some possible modifications are proposed. Finally, some engineering implications from the presented numerical results are discussed.


2020 ◽  
Vol 57 (2) ◽  
pp. 236-245 ◽  
Author(s):  
Clarence Edward Choi ◽  
Charles Wang Wai Ng ◽  
Haiming Liu ◽  
Yu Wang

Some types of barriers are designed with a clearance between the bottom of the barrier and the channel bed. This feature allows small discharges to pass, thereby reducing the maintenance required over the service life of the barrier. Aside from the practical function of a clearance, it influences the impact force, jump height, and discharge. In this paper, a series of physical experiments was conducted using a 6 m long flume to model the interaction between dry granular flow and rigid barrier with a basal clearance. The ratio between the clearance and particle diameter Hc/D was varied from 0 to 10. The channel inclination was varied from 15° to 35° to achieve different Froude numbers before impact. A new impact model for predicting impact force exerted on the barrier with a basal clearance is presented and evaluated. Results reveal that Hc ≥ 3D is capable of reducing the impact force and overflow. Findings from this study highlight the importance of considering the effects of basal clearance on the design of multiple-barrier systems.


2019 ◽  
Vol 7 (2) ◽  
pp. 205-213
Author(s):  
Yong-Doo Kim ◽  
Seung-Jae Lim ◽  
Hyun-Ung Bae ◽  
Kyoung-Ju Kim ◽  
Chin-Ok Lee ◽  
...  
Keyword(s):  

2021 ◽  
Vol 60 (1) ◽  
pp. 145-157
Author(s):  
Yi Luo ◽  
Ke Yuan ◽  
Lumin Shen ◽  
Jiefu Liu

Abstract In this study, a series of in-plane hexagonal honeycombs with different Poisson's ratio induced by topological diversity are studied, considering re-entrant, semi-re-entrant and convex cells, respectively. The crushing strength of honeycomb in terms of Poisson's ratio is firstly presented. In the previous research, we have studied the compression performance of honeycomb with different negative Poisson's ratio. In this study, a comparative study on the local impact resistance of different sandwich panels is conducted by considering a spherical projectile with low to medium impact speed. Some critical criteria (i.e. local indentation profile, global deflection, impact force and energy absorption) are adopted to analyze the impact resistance. Finally, an influential mechanism of Poisson's ratio on the local impact resistance of sandwich panel is studied by considering the variation of core strength and post-impact collapse behavior.


2017 ◽  
Vol 9 (3) ◽  
Author(s):  
Jingchen Hu ◽  
Tianshu Wang

This paper studies the collision problem of a robot manipulator and presents a method to minimize the impact force by pre-impact configuration designing. First, a general dynamic model of a robot manipulator capturing a target is established by spatial operator algebra (SOA) and a simple analytical formula of the impact force is obtained. Compared with former models proposed in literatures, this model has simpler form, wider range of applications, O(n) computation complexity, and the system Jacobian matrix can be provided as a production of the configuration matrix and the joint matrix. Second, this work utilizes the impulse ellipsoid to analyze the influence of the pre-impact configuration and the impact direction on the impact force. To illustrate the inertia message of each body in the joint space, a new concept of inertia quasi-ellipsoid (IQE) is introduced. We find that the impulse ellipsoid is constituted of the inertia ellipsoids of the robot manipulator and the target, while each inertia ellipsoid is composed of a series of inertia quasi-ellipsoids. When all inertia quasi-ellipsoids exhibit maximum (minimum) coupling, the impulse ellipsoid should be the flattest (roundest). Finally, this paper provides the analytical expression of the impulse ellipsoid, and the eigenvalues and eigenvectors are used as measurements to illustrate the size and direction of the impulse ellipsoid. With this measurement, the desired pre-impact configuration and the impact direction with minimum impact force can be easily solved. The validity and efficiency of this method are verified by a PUMA robot and a spatial robot.


2011 ◽  
Vol 378-379 ◽  
pp. 370-373
Author(s):  
Yu Qing Yuan ◽  
Xuan Cang Wang ◽  
Hui Jun Shao

In order to solve the problem of aeolian sand subgrade compaction, we studied the technology of impact compaction, applied it to the engineering practice and analyzed its effect with Rayleigh wave. The technology of impact compaction can combine the compaction of potential energy and kinetic energy and make it easier for the materials to reach their elastic stage. With the combined function of "knead-roll-impact", the impact compaction road roller can compact the soil body and offer 6~10 times impact force and 3~4 times the depth of influence more than the vibratory roller. The impact compaction methods of aeolian sand subgrade were put forward. The comparative field compaction tests between impact and vibratory compaction are carried through, which are detected by Rayleigh wave. The results show that the impact compaction can make the density of the aeolian sand subgrade 2~5% higher than the vibratory compaction, and reach the influence depth of 7 metres. To sum up, the impact compaction can clearly increases the strength and stiffness of aeolian sand subgrade with a dynamic elastic modulus of 202.63MPa.


2021 ◽  
pp. 095745652110307
Author(s):  
Kangping Gao ◽  
Xinxin Xu ◽  
Ning Shi ◽  
Shengjie Jiao

In the process of drilling and coring by the rock-breaking rig, the drill rod is affected by the intermittent impact force, which reduces the efficiency of the rig to break the rock and increases the cost of the drilling and coring. Therefore, it is very important to improve the impact resistance of the drill pipe during the rock-breaking process. To achieve this goal, a flexible design of the drill pipe was carried out, and a dynamical model of the drilling rig based on a series elastic actuator was established. Considering the dynamic performance of the system, a torque feedforward link is introduced and a control model based on the force source is established. The influence of the equivalent inertia of the transmission system and the series elastic actuator damping coefficient on the system stability was analyzed by drawing the frequency domain characteristic curve of the system. By using the control and Simulink simulation software, the electromechanical simulation of the model is carried out, and the torque step tracking response of the system is obtained. A torque feedforward link is introduced to establish the control model of the system based on force source. Through dynamic simulation software ADAMS, dynamic and static impact simulation experiments were carried out on the system. The results show that when a force of 200 N is applied to the output end of the drill pipe in the tangential direction, the maximum moments received by the joint under static and dynamic environments are 34.1 N·m and 57.9 N·m, respectively. When the impact force disappears, the time required for the flexible drill pipe to reach a stable state is only 0.15 s, which verifies that the series elastic actuator–based drill pipe model can alleviate the impact of the external environment and protect the internal structure of the rig.


Sign in / Sign up

Export Citation Format

Share Document