scholarly journals A parametric study on the dynamic response of planar multibody systems with multiple clearance joints

2010 ◽  
Vol 61 (4) ◽  
pp. 633-653 ◽  
Author(s):  
Paulo Flores
2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110177
Author(s):  
Jia Yonghao ◽  
Chen Xiulong

For spatial multibody systems, the dynamic equations of multibody systems with compound clearance joints have a high level of nonlinearity. The coupling between different types of clearance joints may lead to abundant dynamic behavior. At present, the dynamic response analysis of the spatial parallel mechanism considering the three-dimensional (3D) compound clearance joint has not been reported. This work proposes a modeling method to investigate the influence of the 3D compound clearance joint on the dynamics characteristics of the spatial parallel mechanism. For this purpose, 3D kinematic models of spherical clearance joint and revolute joint with radial and axial clearances are derived. Contact force is described as normal contact and tangential friction and later introduced into the nonlinear dynamics model, which is established by the Lagrange multiplier technique and Jacobian of constraint matrix. The influences of compound clearance joint and initial misalignment of bearing axes on the system are analyzed. Furthermore, validation of dynamics model is evaluated by ADAMS and Newton–Euler method. This work provides an essential theoretical basis for studying the influences of 3D clearance joints on dynamic responses and nonlinear behavior of parallel mechanisms.


2001 ◽  
Vol 84 (7) ◽  
pp. 99-106
Author(s):  
Sven Mayer ◽  
Steven L. McCabe

Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


1992 ◽  
Vol 59 (4) ◽  
pp. 991-999 ◽  
Author(s):  
Z. E. Boutaghou ◽  
Arthur G. Erdman ◽  
Henryk K. Stolarski

The dynamic response of flexible beams, plates, and solids undergoing arbitrary spatial motions are systematically derived via a proposed approach. This formulation is capable of incorporating arbitrary representation of the kinematics of deformation, phenomenon of dynamic stiffening, and complete nonlinear interaction between elastic and rigid-body dynamics encountered in constrained multibody systems. It is shown that the present theory captures the phenomenon of dynamic stiffening due to the transfer of the axial and membrane forces to the bending equations of beams and plates, respectively. Examples are presented to illustrate the proposed formulations.


Author(s):  
Tamer M. Wasfy

An object-oriented graphical modeling environment for simulating the coupled dynamic response of flexible multibody systems and sloshing in liquid filled tanks is presented. The environment includes integrated pre-processor, solver, and post-processor. The environment can be used to model liquid tank bearing ground, air or space vehicles. The pre-processor allows constructing an object-oriented hierarchical “preliminary” model of the vehicle, tank, and terrain. The pre-processor includes a hierarchical model tree-editor along with interactive display of the model. It also includes an automatic mesh generator for generating the finite element (FE) model from the preliminary model. The FE model consists of hexahedral, beam, and truss solid elements, rigid bodies, joints, hexahedral incompressible fluid elements, and quadrilateral fluid-solid interface elements. The fluid mesh is modeled using a very light and compliant solid mesh which allows the fluid mesh to move/deform along with the tank using the ALE formulation. The fluid’s free-surface is modeled using a volume-of-fluid algorithm. A parallel explicit-time integration solver is used to generate the coupled dynamic response of the vehicle, tank, and fluid. The post-processor allows near-photorealistic visualization of animations of: vehicle, liquid free-surface, iso-surfaces, terrain and surroundings; colored/contoured surfaces; and surface/volume arrows. Users can control the visualization using the tree-editor or a clickable hierarchical list of natural-language commands.


2019 ◽  
Vol 19 (08) ◽  
pp. 1950091 ◽  
Author(s):  
Wuchao Zhao ◽  
Jiang Qian

Reinforced concrete (RC) beams under the impact loading are typically prone to suffer shear failure in the local response phase. In order to enhance the understanding of the mechanical behavior of the RC beams, their dynamic response and shear demand are numerically investigated in this paper. A 3D finite-element model is developed and validated against the experimental data available in the literature. Taking advantage of the above calibrated numerical model, an intensive parametric study is performed to identify the effect of different factors including the impact velocity, impact mass and beam span-to-depth ratio on the impact response of the RC beams. It is found that, due to the inertial effect, a linear relationship exists between the maximum reverse support force and the peak impact force, while negative bending moments also appear in the shear span. In addition, the local response of the RC beams can be divided into a first impact stage and a separation stage. A shear plug is likely to be formed near the impact point at the first impact stage and a shear failure may be triggered near the support by large support forces. Based on the simulation results, simplified methods are proposed for predicting the shear demand for the two failure modes, whereas physical models are also established to illustrate the resistance mechanism of the RC beams at the peak impact force. By comparing with the results of the parametric study, it is concluded that the shear demand of the RC beams under the impact loading can be predicted by the proposed empirical formulas with reasonable accuracy.


Sign in / Sign up

Export Citation Format

Share Document