scholarly journals A geometric formulation of multirotor aerial vehicle dynamics

Author(s):  
Youngsuk Hong ◽  
Ramy Rashad ◽  
Soocheol Noh ◽  
Taeyoon Lee ◽  
Stefano Stramigioli ◽  
...  
Author(s):  
V. Y. Stepanov

The article gives a classification of the main components of unmanned aerial vehicle (UAV) systems, gives the areas in which the application of UAVs is actual in practice today. Further, the UAV is considered in more detail from the point of view of its flight dynamics analysis, the equation necessary for creating a mathematical model, as well as the model of an ordinary dynamic system as a non-stationary nonlinear controlled object, is given. Next, a description of the developed software for modeling and a description of program algorithm are given. Finally, a conclusion describes the necessary directions for further scientific researches.


2015 ◽  
Vol 789-790 ◽  
pp. 883-888 ◽  
Author(s):  
Wojciech Janusz ◽  
Roman Czyba ◽  
Grzegorz Szafrański ◽  
Michał Niezabitowski

Development of a reliable high-performance multirotor unmanned aerial vehicle (UAV) requires an accurate and practical model of the vehicle dynamics. This paper describes the process and results of the dynamic modeling of an unmanned aerial platform known as quadrotor. To model a vehicle dynamics, elementary physical and aerodynamical principles has been employed. Parameter estimations, from a UAV design have been obtained through direct and indirect measurements. In addition to standard configuration of VTOL (Vertical Take-Off and Landing) platform, the amortized landing gear, modeled as spring-damper system, has been added. The resulting model has been implemented in a simulation environment under MATLABs toolbox, SIMULINK. Some numerical results are presented to illustrate response of the open loop system to specific commands.


2021 ◽  
Author(s):  
Youngsuk Hong ◽  
Ramy Rashad ◽  
Soocheol Noh ◽  
Taeyoon Lee ◽  
Stefano Stramigioli ◽  
...  

Abstract A geometric dynamic modeling framework for generic multirotor aerial vehicles (MAV), based on a modern Lie group formulation of classical screw theory, is presented. Our framework allows for a broad range of rotor-wing con gurations: any number of rotors can be attached in arbitrary con gurations to either the body or wings, with the rotors and wings also tiltable. Our framework takes into account all masses and inertias of the MAV body and rotors, and accounts for both rotor thrust forces and moments as well as external aerodynamic and other forces. Compared to existing methods, our Lie group framework possesses several practical advantages useful for applications ranging from design optimization to model identi cation and trajectory optimization: (i) the dynamic equations can be easily transformed to coordinates of any reference frame; (ii) kinematic and mass-inertial parameters can be easily factored from the dynamic equations; (iii) exact, closedform analytic derivatives of the dynamics with respect to the con guration variables are easily derived. We demonstrate our systematic modeling procedure on examples of xed-tilt, variable-tilt, and hybrid MAVs with wings.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Cuauhtémoc Acosta Lúa ◽  
Claudia Carolina Vaca García ◽  
Stefano Di Gennaro ◽  
B. Castillo-Toledo ◽  
María Eugenia Sánchez Morales

In this paper, the design of a controller for the altitude and rotational dynamics is presented. In particular, the control problem is to maintain a desired altitude in a fixed position. The unmanned aerial vehicle dynamics are described by nonlinear equations, derived using the Newton–Euler approach. The control problem is solved imposing the stability of the error dynamics with respect to desired position and angular references. The performance and effectiveness of the proposed control are tested, first, via numerical simulations, using the Pixhawk Pilot Support Package simulator provided by Mathworks. Then, the controller is tested via a real-time implementation, using a quadrotor Aircraft F-450.


Sign in / Sign up

Export Citation Format

Share Document