scholarly journals Fireside Corrosion of Heat Exchanger Materials for Advanced Solid Fuel Fired Power Plants

Author(s):  
Stefano Mori ◽  
Andy Pidcock ◽  
Joy Sumner ◽  
Nigel Simms ◽  
John Oakey

AbstractTo address the challenge of climate change, future energy systems need to have reduced greenhouse gas emissions and increased efficiencies. For solid fuel fired combustion plants, one route towards achieving this is to increase the system’s steam temperatures and pressures. Another route is to co-fire renewable fuels (such as biomass) with coals. Fireside corrosion performance of two candidate superheater/reheater alloys has been characterised at higher heat exchanger surface temperature. Samples of the alloys (a stainless steel, Sanicro 25 and a nickel-based alloy, IN740) were exposed in fireside corrosion tests at 650 °C, 700 °C and 750 °C, in controlled atmosphere furnaces using the ‘deposit recoat’ test method to simulate superheater/reheater exposure for 1000 h. After exposure, the samples were analysed using dimensional metrology to determine the extent and distributions of corrosion damage in terms of surface recession and internal damage. At 650 °C, the stainless steel and nickel-based alloy performed similarly, while at 700 °C and above, the median damage to the steel was at least 3 times greater than for the nickel-based alloy. Optical and electronic microscopy studies were used to study samples’ damage morphologies after exposure. Intergranular damage and pits were found in sample cross sections, while chromium depletion was found in areas with internal damage. For high-temperature applications, the higher cost of the nickel-based alloy could be offset by the longer life they would allow in plant with higher operating temperatures.

Author(s):  
Sarah Tioual-Demange ◽  
Gaëtan Bergin ◽  
Thierry Mazet ◽  
Luc de Camas

Abstract The sCO2-4-NPP european project aims to develop an innovative technology based on supercritical CO2 (sCO2) for heat removal to improve the safety of current and future nuclear power plants. The heat removal from the reactor core will be achieved with multiple highly compact self-propellant, self-launching, and self-sustaining cooling system modules, powered by a sCO2 Brayton cycle. Heat exchangers are one of the key components required for advanced Brayton cycles using supercritical CO2. Fives Cryo company, a brazed plates and fins heat exchangers manufacturer, with its expertise in thermal and hydraulic design and brazing fabrication is developing compact, and highly efficient stainless steel heat exchanger solution for sCO2 power cycles, thanks to their heat exchange capability with low pinch and high available flow sections. The aim of the development of this specific heat exchanger technology is to achieve an elevated degree of regeneration. For this matter, plates and fins heat exchanger is a very interesting solution to meet the desired thermal duty with low pressure drop leading to a reduction in size and capital cost. The enhancement of the mechanical integrity of plates and fins heat exchanger equipment would lead to compete with, and even outweigh, printed circuit heat exchangers technology, classically used for sCO2 Brayton cycles. sCO2 cycle conditions expose heat exchangers to severe conditions. Base material selection is essential, and for cost reasons, it is important to keep affordable heat-resistant austenitic stainless steel grades, much cheaper than a nickel-based alloy. Another advantage of high compactness of plates and fins heat exchangers is the diminution of the amount of material used in the heat exchanger manufacturing, decreasing even more its cost. The challenge here is to qualify stainless steel plates and fins heat exchangers mechanical resistance, at cycle operating conditions, and meet with pressure vessels codes and regulations according to nuclear requirements. One critical point in the development of the heat exchangers is the design of the fins. As secondary surface, they allow the maximization of heat transfer at low pressure drop. At the same time mechanical strength has to be guaranteed. To withstand high pressure, fins thickness has to be significant, which makes the implementation complicated. Efforts were dedicated to successfully obtain an optimal shape. Forming of fins was therefore improved compared to conventional techniques. Important work was undertaken to define industrial settings to flatten the top of the fins leading to a maximum contact between the brazing alloy and the fins. Consequently brazed joints quantity is minimized inducing a diminution of the presence of eutectic phase, which is structurally brittle and limits the mechanical strength of the construction. A metallurgical study brings other elements leading to the prevention of premature rupture of the brazed structure. The idea is to determine an optimized solidification path and to identify a temperature range and holding time where the brazed joint is almost free of eutectic phase during the assembly process in the vacuum furnace.


2014 ◽  
Vol 28 (5) ◽  
pp. 3102-3109 ◽  
Author(s):  
Sofia Karlsson ◽  
Torbjörn Jonsson ◽  
Josefin Hall ◽  
Jan-Erik Svensson ◽  
Jesper Liske

2008 ◽  
Vol 595-598 ◽  
pp. 377-386 ◽  
Author(s):  
K.E. Coleman ◽  
N.J. Simms ◽  
P.J. Kilgallon ◽  
J.E. Oakey

There is growing concern over the effects of global warning. In response the power generation sector is having to consider a wider range of systems and fuels for use in generating heat and power. One of the classes of solid fuels that is being increasingly developed is biomass, which is regarded a both sustainable and carbon neutral. In fact, the term biomass covers a wide range of fuels from waste products, such as straw, forestry wastes and sawdust, through to purpose grown energy crops, such as coppiced willow and miscanthus. To maximise combustion plant efficiency it is necessary to use high temperature/pressure steam turbines. However, to generate such steam conditions, the high heat exchanger surface temperatures can interaction with the various potential products of biomass combustion to cause excessive deposition and corrosion of these surfaces. This paper considers the range of heat exchanger operating environments that can be produced by the combustion of different potential biomass fuels, especially the effects of the higher K and Cl contents of the faster growing biomass fuels. This paper reports the results of a series of laboratory corrosion tests that have been carried out to assess the effects of various types of biomass on the corrosion of high temperature heat exchanger materials in combustion plants. The corrosion tests have been carried out using the deposit recoat method in controlled atmosphere furnaces. Six 1000 hour tests have been carried out at typical superheater / reheater and evaporator conditions (450-600°C) using simulated deposit and gas compositions, which have been selected on the basis of potential biomass fuel compositions. The five metals exposed in this study are widely used in power plant heat exchangers: 1% Cr steel, 2.25% Cr steel (T23), 9% Cr steel (T91), X20CrMoV121, TP347HFG and alloy 625. During the course of the tests, the material degradation was monitored using traditional mass change measurements. In order to produce statistically valid data on the actual metal loss from the materials, the performance of the materials in these tests was determined from dimensional metrology before and after exposure: pre-exposure measurements were made using a micrometer; post-exposure measurements were made using an image analyser system. SEM/EDX and XRD analyses have been used to confirm corrosion mechanisms and their association with corrosion damage levels. For each material, the dimensional metrology data have been used to determine the sensitivity of the corrosion damage to changes in the exposure conditions (e.g. deposit composition, gas composition) to generate models of the corrosion performance of the materials. The corrosion data and model outputs have been compared with data available from power plants operating on coal, straw or wood fuels.


2018 ◽  
Vol 934 ◽  
pp. 117-123
Author(s):  
Rong Liu ◽  
Yi Li ◽  
Glenn McRae

The corrosion resistance of Stellite 6 alloy in morpholine solution with pH 9.5 is investigated using the electrochemical test method, simulating the amine environment of the boiler feed water service condition in coal power plants. Polarization test is performed on Stellite 6 alloy under the low potential varying from-0.4 VSCE to 1.2 VSCE and is also conducted under a constant high potential (4 VSCE) in order to fail the sample surface. 17-4PH stainless steel, which is also a common material for the application of the boiler feed water in coal power plants, is tested simultaneously under the same conditions for comparison. It is shown that the polarization curve 17-4PH steel from the low potential test has an apparent passivation region indicating a protective oxide film formed on the sample surface, but Stellite 6 only exhibits a tendency to passivate. Both samples after the failure tests under the high potential (4 VSC) are analyzed using SEM/EDX. The surface morphologies indicate that the former is severely corroded in the solution while the latter is less corroded. The corrosion mechanisms of Stellite 6 alloy and 174PH stainless steel in morpholine solution are discussed with assistance of the Pourbaix diagrams.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (8) ◽  
pp. 65-78 ◽  
Author(s):  
W.B.A. (SANDY) SHARP ◽  
W.J. JIM FREDERICK ◽  
JAMES R. KEISER ◽  
DOUGLAS L. SINGBEIL

The efficiencies of biomass-fueled power plants are much lower than those of coal-fueled plants because they restrict their exit steam temperatures to inhibit fireside corrosion of superheater tubes. However, restricting the temperature of a given mass of steam produced by a biomass boiler decreases the amount of power that can be generated from this steam in the turbine generator. This paper examines the relationship between the temperature of superheated steam produced by a boiler and the quantity of power that it can generate. The thermodynamic basis for this relationship is presented, and the value of the additional power that could be generated by operating with higher superheated steam temperatures is estimated. Calculations are presented for five plants that produce both steam and power. Two are powered by black liquor recovery boilers and three by wood-fired boilers. Steam generation parameters for these plants were supplied by industrial partners. Calculations using thermodynamics-based plant simulation software show that the value of the increased power that could be generated in these units by increasing superheated steam temperatures 100°C above current operating conditions ranges between US$2,410,000 and US$11,180,000 per year. The costs and benefits of achieving higher superheated steam conditions in an individual boiler depend on local plant conditions and the price of power. However, the magnitude of the increased power that can be generated by increasing superheated steam temperatures is so great that it appears to justify the cost of corrosion-mitigation methods such as installing corrosion-resistant materials costing far more than current superheater alloys; redesigning biomassfueled boilers to remove the superheater from the flue gas path; or adding chemicals to remove corrosive constituents from the flue gas. The most economic pathways to higher steam temperatures will very likely involve combinations of these methods. Particularly attractive approaches include installing more corrosion-resistant alloys in the hottest superheater locations, and relocating the superheater from the flue gas path to an externally-fired location or to the loop seal of a circulating fluidized bed boiler.


2019 ◽  
Vol 12 (1) ◽  
pp. 22-28
Author(s):  
V. Ye. Mikhailov ◽  
S. P. Kolpakov ◽  
L. A. Khomenok ◽  
N. S. Shestakov

One of the most important issues for modern domestic power industry is the creation and further widespread introduction of solid propellant energy units for super-critical steam parameters with high efficiency (43–46%) and improved environmental parameters. This will significantly reduce the use of natural gas.At the same time, one of the major drawbacks of the operation of pulverized coal power units is the need to use a significant amount of fuel oil during start-up and shutdown of boilers to stabilize the burning of the coal torch in the variable boiler operating modes.In this regard, solid fuel TPPs need to be provided with fuel oil facilities, with all the associated problems to ensure the performance (heating of fuel oil in winter), reliability and safety. All of the above problems increase both the TPP capital construction costs, and the electricity generating cost.A practical solution to the above problems at present is the use of a plasma technology for coal torch ignition based on thermochemical preparation of fuel for combustion. The materials of the developments of JSC “NPO CKTI” on application of plasmatrons in boilers of thermal power plants at metallurgical complexes of the Russian Federation are also considered.Plasma ignition systems for solid fuels in boilers were developed by Russian specialists and were introduced at a number of coal-fi red power plants in the Russian Federation, Mongolia, North Korea, and Kazakhstan. Plasma ignition of solid fuels is widely used in China for almost 30% of power boilers.The introduction of plasma-energy technologies will improve the energy efficiency of domestic solid-fuel thermal power plants and can be widely implemented in the modernization of boilers.During the construction of new TPPs, the construction of fuel oil facilities can be abandoned altogether, which will reduce the capital costs of the construction of thermal power plants, reduce the construction footprint, and increase the TPP safety.


2020 ◽  
Vol 64 (1) ◽  
pp. 23-28
Author(s):  
J. Hodač ◽  
Z. Fulín ◽  
P. Mareš ◽  
J. Veselá ◽  
O. Chocholatý

AbstractTo produce realistic test specimens with realistic flaws, it is necessary to develop appropriate procedure for corrosion flaw production. Tested specimens are made from steels commonly used in power plants, such as carbon steels, stainless steels and their dissimilar weldments. In this study, corrosion damage from NaCl water solution and NaCl water mist are compared. Specimens were tested with and without mechanical bending stress. The corrosion processes produced plane, pitting and galvanic corrosion. On dissimilar weldments galvanic corrosion was observed and resulted to the deepest corrosion damage. Deepest corrosion flaws were formed on welded samples. The corrosion rate was also affected by the solution flow in a contact with the specimens, which results in a corrosion-erosive wear. Produced flaws are suitable as natural crack initiators or as realistic corrosion flaws in test specimens.


2021 ◽  
Vol 11 (15) ◽  
pp. 6772
Author(s):  
Charlotte Van Steen ◽  
Els Verstrynge

Corrosion of the reinforcement is a major degradation mechanism affecting durability and safety of reinforced concrete (RC) structures. As the corrosion process starts internally, it can take years before visual damage can be noticed on the surface, resulting in an overall degraded condition and leading to large financial costs for maintenance and repair. The acoustic emission (AE) technique enables the continuous monitoring of the progress of internal cracking in a non-invasive way. However, as RC is a heterogeneous material, reliable damage detection and localization remains challenging. This paper presents extensive experimental research aiming at localizing internal damage in RC during the corrosion process. Results of corrosion damage monitoring with AE are presented and validated on three sample scales: small mortar samples (scale 1), RC prisms (scale 2), and RC beams (scale 3). For each scale, the corrosion process was accelerated by imposing a direct current. It is found that the AE technique can detect damage earlier than visual inspection. However, dedicated filtering is necessary to reliably localize AE events. Therefore, AE signals were filtered by a newly developed post-processing protocol which significantly improves the localization results. On the smallest scale, results were confirmed with 3D micro-CT imaging, whereas on scales 2 and 3, results were compared with surface crack width measurements and resulting rebar corrosion levels.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 543
Author(s):  
Ketan Kumar Sandhi ◽  
Jerzy Szpunar

Nickel superalloy Hastelloy-N, alloy X-750, stainless steel 316 (SS316), and stainless steel 304 (SS304) are among the alloys used in the construction of molten salt reactor (MSR). These alloys were analyzed for their corrosion resistance behavior in molten fluoride salt, a coolant used in MSR reactors with 46.5% LiF+ 11.5% NaF+ 42% KF. The corrosion tests were run at 700 °C for 100 h under the Ar cover gas. After corrosion, significant weight loss was observed in the alloy X750. Weight loss registered in SS316 and SS304 was also high. However, Hastelloy-N gained weight after exposure to molten salt corrosion. This could be attributed to electrochemical plating of corrosion products from other alloys on Hastelloy-N surface. SEM–energy-dispersive X-ray spectroscopy (EDXS) scans of cross-section of alloys revealed maximum corrosion damage to the depth of 250 µm in X750, in contrast to only 20 µm on Hastelloy-N. XPS wide survey scans revealed the presence of Fe, Cr, and Ni elements on the surface of all corroded alloys. In addition, Cr clusters were formed at the triple junctions of grains, as confirmed by SEM–EBSD (Electron Back Scattered Diffraction) analysis. The order of corrosion resistance in FLiNaK environment was X750 < SS316 < SS304 < Hastelloy-N.


Sign in / Sign up

Export Citation Format

Share Document