Investigation of Cold Atmospheric Plasma-Activated Water for the Dental Unit Waterline System Contamination and Safety Evaluation in Vitro

2017 ◽  
Vol 37 (4) ◽  
pp. 1091-1103 ◽  
Author(s):  
J. Pan ◽  
Y. L. Li ◽  
C. M. Liu ◽  
Y. Tian ◽  
S. Yu ◽  
...  
2018 ◽  
Vol 18 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Michael Keidar

Background: Over the past five years, the cold atmospheric plasma-activated solutions (PAS) have shown their promissing application in cancer treatment. Similar as the common direct cold plasma treatment, PAS shows a selective anti-cancer capacity in vitro and in vivo. However, different from the direct cold atmospheric plasma (CAP) treatment, PAS can be stored for a long time and can be used without dependence on a CAP device. The research on PAS is gradually becoming a hot topic in plasma medicine. Objectives: In this review, we gave a concise but comprehensive summary on key topics about PAS including the development, current status, as well as the main conclusions about the anti-cancer mechanism achieved in past years. The approaches to make strong and stable PAS are also summarized.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Olivia Jones ◽  
Xiaoqian Cheng ◽  
Saravana R. K. Murthy ◽  
Lawan Ly ◽  
Taisen Zhuang ◽  
...  

AbstractCholangiocarcinoma (CCA) is a rare biliary tract cancer with a low five-year survival rate and high recurrence rate after surgical resection. Currently treatment approaches include systemic chemotherapeutics such as FOLFIRINOX, a chemotherapy regimen is a possible treatment for severe CCA cases. A limitation of this chemotherapy regimen is its toxicity to patients and adverse events. There exists a need for therapies to alleviate the toxicity of a FOLFIRINOX regimen while enhancing or not altering its anticancer properties. Cold atmospheric plasma (CAP) is a technology with a promising future as a selective cancer treatment. It is critical to know the potential interactions between CAP and adjuvant chemotherapeutics. In this study the aim is to characterize the efficacy of FOLFIRINOX and CAP in combination to understand potential synergetic effect on CCA cells. FOLFIRINOX treatment alone at the highest dose tested (53.8 µM fluorouracil, 13.7 µM Leucovorin, 5.1 µM Irinotecan, and 3.7 µM Oxaliplatin) reduced CCA cell viability to below 20% while CAP treatment alone for 7 min reduced viability to 3% (p < 0.05). An analysis of cell viability, proliferation, and cell cycle demonstrated that CAP in combination with FOLFIRINOX is more effective than either treatment alone at a lower FOLFIRINOX dose of 6.7 µM fluorouracil, 1.7 µM leucovorin, 0.6 µM irinotecan, and 0.5 µM oxaliplatin and a shorter CAP treatment of 1, 3, or 5 min. In conclusion, CAP has the potential to reduce the toxicity burden of FOLFIRINOX and warrants further investigation as an adjuvant therapy.


Author(s):  
Wang Lai Hui ◽  
Vittoria Perrotti ◽  
Adriano Piattelli ◽  
Kostya (Ken) Ostrikov ◽  
Zhi Fang ◽  
...  

Abstract Objective Treatment of implants with peri-implantitis is often unsuccessful due to residual microbial biofilm hindering re-osseointegration. The aim of this study was to treat biofilm-grown titanium (Ti) implants with different modalities involving air abrasion (AA) and cold atmospheric plasma (CAP) to compare the effectiveness in surface decontamination and the alteration/preservation of surface topography. Materials and methods Saliva collected from a peri-implantitis patient was used to in vitro develop human biofilm over 35 implants with moderately rough surface. The implants were then mounted onto standardized acrylic blocks simulating peri-implantitis defects and treated with AA (erythritol powder), CAP in a liquid medium, or a combination (COM) of both modalities. The remaining biofilm was measured by crystal violet (CV). Surface features and roughness before and after treatment were assessed by scanning electron microscope (SEM). The data were statistically analyzed using Kruskal-Wallis followed by Tukey’s multiple comparison test. Results In the present peri-implantitis model, the human complex biofilm growth was successful as indicated by the statistical significance between the negative and positive controls. All the treatment groups resulted in a remarkable implant surface decontamination, with values very close to the negative control for AA and COM. Indeed, statistically significant differences in the comparison between the positive control vs. all the treatment groups were found. SEM analysis showed no post-treatment alterations on the implant surface in all the groups. Conclusions Decontamination with AA delivering erythritol with or without CAP in liquid medium demonstrated compelling efficacy in the removal of biofilm from implants. All the tested treatments did not cause qualitative alterations to the Ti surface features. No specific effects of the CAP were observed, although further studies are necessary to assess its potential as monotherapy with different settings or in combination with other decontamination procedures. Clinical relevance CAP is a promising option in the treatment of peri-implantitis because it has potential to improve the elimination of bacterial plaque from implant surfaces, in inaccessible pockets or during open-flap debridement, and should stimulate the process of the re-osseointegration of affected dental implants by not altering surface features and roughness.


2020 ◽  
Vol 17 (3) ◽  
pp. 851-863 ◽  
Author(s):  
Rui He ◽  
Qin Li ◽  
Wenqi Shen ◽  
Tao Wang ◽  
Huijuan Lu ◽  
...  

2018 ◽  
Vol 8 (4) ◽  
pp. 379-401 ◽  
Author(s):  
Constance Duchesne ◽  
Nadira Frescaline ◽  
Jean-Jacques Lataillade ◽  
Antoine Rousseau

Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1505 ◽  
Author(s):  
Wang Lai Hui ◽  
Vittoria Perrotti ◽  
Flavia Iaculli ◽  
Adriano Piattelli ◽  
Alessandro Quaranta

In recent years, cold atmospheric plasma (CAP) technologies have received increasing attention in the field of biomedical applications. The aim of this article is to review the currently available literature to provide an overview of the scientific principles of CAP application, its features, functions, and its applications in systemic and oral diseases, with a specific focus on its potential in implantology. In this narrative review, PubMed, Medline, and Scopus databases were searched using key words like “cold atmospheric plasma”, “argon plasma”, “helium plasma”, “air plasma”, “dental implants”, “implantology”, “peri-implantitis”, “decontamination”. In vitro studies demonstrated CAP’s potential to enhance surface colonization and osteoblast activity and to accelerate mineralization, as well as to determine a clean surface with cell growth comparable to the sterile control on both titanium and zirconia surfaces. The effect of CAP on biofilm removal was revealed in comparative studies to the currently available decontamination modalities (laser, air abrasion, and chlorhexidine). The combination of mechanical treatments and CAP resulted in synergistic antimicrobial effects and surface improvement, indicating that it may play a central role in surface “rejuvenation” and offer a novel approach for the treatment of peri-implantitis. It is noteworthy that the CAP conditioning of implant surfaces leads to an improvement in osseointegration in in vivo animal studies. To the best of our knowledge, this is the first review of the literature providing a summary of the current state of the art of this emerging field in implantology and it could represent a point of reference for basic researchers and clinicians interested in approaching and testing new technologies.


2018 ◽  
Vol 20 (23) ◽  
pp. 5276-5284 ◽  
Author(s):  
Renwu Zhou ◽  
Rusen Zhou ◽  
Karthika Prasad ◽  
Zhi Fang ◽  
Robert Speight ◽  
...  

Here the possibility of plasma-activated water being a green disinfectant, whose bioactivity is closely linked to peroxynitrite generation, was demonstrated.


2019 ◽  
Author(s):  
Ban H. Adil ◽  
Mohammad M. Farhan Al-Halbosiy ◽  
Hamid H. Murbat

Sign in / Sign up

Export Citation Format

Share Document