scholarly journals Physiological N response of field-grown maize hybrids (Zea mays L.) with divergent yield potential and grain protein concentration

2008 ◽  
Vol 316 (1-2) ◽  
pp. 151-160 ◽  
Author(s):  
Martín Uribelarrea ◽  
Steven J. Crafts-Brandner ◽  
Fred E. Below
2012 ◽  
pp. 203-210
Author(s):  
Krisztina Molnár ◽  
Róbert Vig ◽  
Eszter Nemeskéri ◽  
Attila Dobos

The successfulness of crop production is significantly affected by not only the the average yields that provide cost effectiveness, but also the success of striving for yield safety, therefore, varieties and hybrids tolerant to environmental stress factors are worth being included into the sowing structure. Our aim was to further the decision making of producers in prepaering the right sowing structure by the evaluation of sweet maize hybrids’ tolerance to excess rainfall.We performed our examinations in an extremely wet year (2010) on chernozem soil on three sweet maize hybrids (GSS 8529, GSS 1477, Overland) in 12 replications. Comparing the yields of 2010 with those that can be expected under optimal rainfall conditions, we showed that the examined hybrids react to the amount of rainfall higher than their needs with yield depression. The excess rainfall tolerance of the examined hybrids is different in the case of each hybrid.


Crop Science ◽  
2003 ◽  
Vol 43 (5) ◽  
pp. 1671-1679 ◽  
Author(s):  
Paulo C. Canci ◽  
Lexingtons M. Nduulu ◽  
Ruth Dill‐Macky ◽  
Gary J. Muehlbauer ◽  
Donald C. Rasmusson ◽  
...  

Author(s):  
Maciej T. Grzesiak ◽  
Anna Maksymowicz ◽  
Barbara Jurczyk ◽  
Tomasz Hura ◽  
Grzegorz Rut ◽  
...  

2002 ◽  
Vol 82 (4) ◽  
pp. 489-498 ◽  
Author(s):  
B G McConkey ◽  
D. Curtin ◽  
C A Campbell ◽  
S A Brandt ◽  
F. Selles

We examined 1990-1996 crop and soil N data for no-tillage (NT), minimum tillage (MT) and conventional tillage (CT) systems from four long-term tillage studies in semiarid regions of Saskatchewan for evidence that the N status was affected by tillage system. On a silt loam and clay soil in the Brown soil zone, spring what (Triticum aestivum L.) grain yield and protein concentration were lower for NT compared with tilled (CT or MT) systems for a fallow-wheat (F-WM) rotation. Grain protein concentration for continuous wheat (Cont W) was also lower for NT than for MT. For a sandy loam soil in the Brown soil zone, durum (Triticum durum L.) grain protein concentration was similar for MT and NT for both Cont W and F-W, but NT had higher grain yield than MT (P < 0.05 for F-W only). For a loam soil in the Dark Brown soil zone, wheat grain yield for NT was increased by about 7% for fallow-oilseed-wheat (F-O-W) and wheat-oilseed-wheat (W-O-W) rotations. The higher grain yields for NT reduced grain protein concentration by dilution effect as indicated by similar grain N yield. However, at this site, about 23 kg ha-1 more fertilizer N was required for NT than for CT. Elimination of tillage increased total organic N in the upper 7.5 cm of soil and N in surface residues. Our results suggest that a contributing factor to decreased availability of soil N in medium- and fine-textured soils under NT was a slower rate of net N mineralization from organic matter. Soil nitrates to 2.4 m depth did not indicate that nitrate leaching was affected by tillage system. Current fertilizer N recommendations developed for tilled systems may be inadequate for optimum production of wheat with acceptable grain protein under NT is semiarid regions of Saskatchewan. Key words: Tillage intensity, N availability, soil N fractions, N mineralization, crop residue decomposition, grain protein


2002 ◽  
Vol 82 (3) ◽  
pp. 507-512 ◽  
Author(s):  
H. Wang ◽  
M. R. Fernandez ◽  
F. R. Clarke ◽  
R. M. DePauw ◽  
J. M. Clarke

Although leaf spotting diseases have been reported to have a negative effect on grain yield and seed characteristics of wheat (Triticum spp.), the magnitude of such effects on wheat grown on dryland in southern Saskatchewan is not known. A fungicide experiment was conducted at Swift Current (Brown soil) and Indian Head (Black soil) from 1997 to 1999 to determine the effect of leaf spotting diseases on yield and seed traits of wheat. Two fungicides, Folicur 3.6F and Bravo 500, were applied at different growth stages on three common wheat (Triticum aestivum L.) and three durum wheat (T. turgidum L. var durum) genotypes. Fungicide treatments generally did not affect yield, kernel weight, test weight or grain protein concentration, and these effects were relatively consistent among genotypes. Folicur applied at head emergence in 1997 and at flag leaf emergence and/or head emergence in 1998 increased yield at Indian Head (P < 0.05). Fungicides applied at and before flag leaf emergence tended to increase kernel weight. Grain protein concentration increased only in treatments of Bravo applications at Indian Head in 1998. These results suggested that under the dryland environment and management in southern Saskatchewan leaf spotting diseases generally have a small effect on yield, kernel weight, test weight and protein concentration. Key words: Wheat, leaf spotting diseases, fungicide, yield


1996 ◽  
Vol 36 (4) ◽  
pp. 443 ◽  
Author(s):  
MG Mason ◽  
RW Madin

Field trials at Beverley (19911, Salmon Gums (1991; 2 sites) and Merredin (1992; 2 sites), each with 5 rates of nitrogen (N) and 3 levels of weed control, were used to investigate the effect of weeds and N on wheat grain yield and protein concentration during 1991 and 1992. Weeds in the study were grasses (G) and broadleaf (BL). Weeds reduced both vegetative dry matter yield and grain yield of wheat at all sites except for dry matter at Merredin (BL). Nitrogen fertiliser increased wheat dry matter yield at all sites. Nitrogen increased wheat grain yield at Beverley and Merredin (BL), but decreased yield at both Salmon Gums sites in 1991. Nitrogen fertiliser increased grain protein concentration at all 5 sites-at all rates for 3 sites [Salmon Gums (G) and (BL) and Merredin (G)] and at rates of 69 kg N/ha or more at the other 2 sites [Beverley and Merredin (BL)]. However, the effect of weeds on grain protein varied across sites. At Merredin (G) protein concentration was higher where there was no weed control, possibly due to competition for soil moisture by the greater weed burden. At Salmon Gums (G), grain protein concentration was greater when weeds were controlled than in the presence of weeds, probably due to competition for N between crop and weeds. In the other 3 trials, there was no effect of weeds on grain protein. The effect of weeds on grain protein appears complex and depends on competition between crop and weeds for N and for water at the end of the season, and the interaction between the two.


2012 ◽  
Vol 4 (11) ◽  
Author(s):  
Ali Hafeez Malik ◽  
Allan Andersson ◽  
Ramune Kuktaite ◽  
Muhammad Yaqub Mujahid ◽  
Bismillah Khan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document