Fertilization and litter effects on the functional group biomass, species diversity of plants, microbial biomass, and enzyme activity of two alpine meadow communities

2010 ◽  
Vol 331 (1-2) ◽  
pp. 377-389 ◽  
Author(s):  
Changting Wang ◽  
Ruijun Long ◽  
Qilan Wang ◽  
Wei Liu ◽  
Zengchun Jing ◽  
...  
2004 ◽  
Vol 12 (4) ◽  
pp. 403-409
Author(s):  
LONG Rui-Jun ◽  
Lei Shang ◽  
Yangjin Zhuoga ◽  
Ji Yang ◽  
Bo Li ◽  
...  

2014 ◽  
Vol 37 (11) ◽  
pp. 979-987 ◽  
Author(s):  
Jun-Qiang CHEN ◽  
Rui ZHANG ◽  
Yao-Chen HOU ◽  
Li-Na MA ◽  
Lu-Ming DING ◽  
...  

2014 ◽  
Vol 37 (4) ◽  
pp. 498-508 ◽  
Author(s):  
Xiefeng Ye ◽  
Hongen Liu ◽  
Zheng Li ◽  
Yong Wang ◽  
Yingyuan Wang ◽  
...  

2021 ◽  
Vol 15 (2) ◽  
pp. 224-230
Author(s):  
Liuyan Tang ◽  
Lin Chen ◽  
Zhen’an Yang

Natural and artificial restoration measures are widely used to restore degraded ecosystems, such as degraded alpine meadow. The objective of this research was to evaluate the advantages and disadvantages of natural and artificial measures for extremely degraded alpine meadows. We removed the surface soil (0–10 cm) of the alpine meadow to simulate the extremely degraded “black soil beach,” and set artificial measures (planting Festuca sinensis (E) and Elymus sibircus L. cv. chuan-cao No. 1 (F)) and natural recovery (N) (without any artificial auxiliary measures) in the northeastern part of the Qinghai-Tibet Plateau (QTP), China. After 3 years, we determined the characteristics of community and soil in the artificial and natural treatment. The results show that the species number, above-and below-ground biomass (AB, BB), root-shoot ratio (R/S) in N is significantly higher than that in artificial restoration (E and F); while the community coverage and concentration of soil total carbon, total nitrogen, microbial biomass carbon, microbial biomass nitrogen and microbial biomass phosphorus (TC, TN, MBC, MBN and MBP) in artificial restoration is significantly higher than that in N. In conclusion, compared with N, artificial measures (E and F) are not completely beneficial to the development of plant community diversity and the restoration of soil nutrients in the extremely degraded meadow. Thus, the establishment of artificial grassland is not necessarily better than natural recovery for the extremely degraded alpine meadow.


Sign in / Sign up

Export Citation Format

Share Document