Effects of planting structure on soil water-stable aggregates, microbial biomass and enzyme activity in a catchment of Loess Plateau terraces, China

2020 ◽  
pp. 103819
Author(s):  
Li Xiao ◽  
Yimei Huang ◽  
Junfeng Zhao ◽  
Junying Zhou ◽  
Fakher Abbas
2000 ◽  
Vol 80 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Martin H. Chantigny ◽  
Denis A. Angers ◽  
Chantal J. Beauchamp

Application of paper mill wastes generally improves soil organic matter content, biological activity and physical properties. However, the impact of large application rates (>50 Mg ha−1) on soil microflora and their activity has not been assessed. A field study was undertaken on a well-drained clay loam and a poorly drained silty clay loam amended with de-inking paper sludge (DPS) at rates of 0 (control), 50 or 100 Mg ha−1. K2SO4-extractable C (Cext), soil water content (SWC), microbial biomass C (MBC) and different enzyme activity rates were periodically measured in soil during 1075 d following DPS incorporation. Compared with control soils, Cext content increased by 100 to 200%, and soil water content increased by 35% following incorporation of DPS at 100 Mg ha−1. Those differences decreased in time as DPS decomposed. Soil MBC increased proportionally with the rate of DPS amendment and was about twice the amount in soils amended with 100 Mg ha−1 compared with the control. Microbial quotient (ratio of MBC to total soil organic C) was greater in DPS-amended than in control soils until day 370, reflecting the input of labile C from DPS. Compared with the control, fluorescein diacetate hydrolysis and alkaline phosphatase activity rates increased by 40 to 100% when adding 50 Mg DPS ha−1. However, the rates were similar for 50 and 100 Mg DPS ha−1. We concluded that DPS promoted microbial growth and activity in the soil by improving C and water availability. However, levelling off of enzyme activity at a DPS loading rate above 50 Mg ha−1 could reflect changes in soil microbial community, or some kinetic interference or nutrient deficiency induced by excessive C input. Key words: Microbial biomass, active carbon, soil enzyme, paper sludge


2011 ◽  
Vol 37 (4) ◽  
pp. 686-693 ◽  
Author(s):  
Ling-Ling LI ◽  
Gao-Bao HUANG ◽  
Ren-Zhi ZHANG ◽  
Li-Qun CAI ◽  
Zhu-Zhu LUO ◽  
...  

2021 ◽  
Vol 312 ◽  
pp. 107354 ◽  
Author(s):  
Ai-Tian Ren ◽  
Rui Zhou ◽  
Fei Mo ◽  
Shu-Tong Liu ◽  
Ji-Yuan Li ◽  
...  

2021 ◽  
Vol 312 ◽  
pp. 107342
Author(s):  
Rui Zhang ◽  
Di Wang ◽  
Ziqi Yang ◽  
Katsutoshi Seki ◽  
Manmohanjit Singh ◽  
...  

2021 ◽  
Vol 491 ◽  
pp. 119156
Author(s):  
Binbin Li ◽  
Wantao Zhang ◽  
Shujie Li ◽  
Ju Wang ◽  
Guobin Liu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong-wang Zhang ◽  
Kai-bo Wang ◽  
Jun Wang ◽  
Changhai Liu ◽  
Zhou-ping Shangguan

AbstractChanges in land use type can lead to variations in soil water characteristics. The objective of this study was to identify the responses of soil water holding capacity (SWHC) and soil water availability (SWA) to land use type (grassland, shrubland and forestland). The soil water characteristic curve describes the relationship between gravimetric water content and soil suction. We measured the soil water characteristic parameters representing SWHC and SWA, which we derived from soil water characteristic curves, in the 0–50 cm soil layer at sites representing three land use types in the Ziwuling forest region, located in the central part of the Loess Plateau, China. Our results showed that the SWHC was higher at the woodland site than the grassland and shrubland, and there was no significant difference between the latter two sites, the trend of SWA was similar to the SWHC. From grassland to woodland, the soil physical properties in the 0–50 cm soil layer partially improved, BD was significantly higher at the grassland site than at the shrubland and woodland sites, the clay and silt contents decreased significantly from grassland to shrubland to woodland and sand content showed the opposite pattern, the soil porosity was higher in the shrubland and woodland than that in the grassland, the soil physical properties across the 0–50 cm soil layer improved. Soil texture, porosity and bulk density were the key factors affecting SWHC and SWA. The results of this study provide insight into the effects of vegetation restoration on local hydrological resources and can inform soil water management and land use planning on the Chinese Loess Plateau.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2791
Author(s):  
Pengyan Su ◽  
Mingjun Zhang ◽  
Deye Qu ◽  
Jiaxin Wang ◽  
Yu Zhang ◽  
...  

As a species for ecological restoration in northern China, Tamarix ramosissima plays an important role in river protection, flood control, regional climate regulation, and landscape construction with vegetation. Two sampling sites were selected in the hillside and floodplain habitats along the Lanzhou City, and the xylems of T. ramosissima and potential water sources were collected, respectively. The Bayesian mixture model (MixSIAR) and soil water excess (SW-excess) were applied to analyze the relationship on different water pools and the utilization ratios of T. ramosissima to potential water sources in two habitats. The results showed that the slope and intercept of local meteoric water line (LMWL) in two habitats were smaller compared with the global meteoric water line (GMWL), which indicated the existence of drier climate and strong evaporation in the study area, especially in the hillside habitat. Except for the three months in hillside, the SW-excess of T. ramosissima were negative, which indicated that xylems of T. ramosissima are more depleted in δ2H than the soil water line. In growing seasons, the main water source in hillside habitat was deep soil water (80~150 cm) and the utilization ratio was 63 ± 17% for T. ramosissima, while the main water source in floodplain habitat was shallow soil water (0~30 cm), with a utilization ratio of 42.6 ± 19.2%, and the water sources were different in diverse months. T. ramosissima has a certain adaptation mechanism and water-use strategies in two habitats, and also an altered water uptake pattern in acquiring the more stable water. This study will provide a theoretical basis for plant water management in ecological environment protection in the Loess Plateau.


2014 ◽  
Vol 37 (4) ◽  
pp. 498-508 ◽  
Author(s):  
Xiefeng Ye ◽  
Hongen Liu ◽  
Zheng Li ◽  
Yong Wang ◽  
Yingyuan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document