Rhizobium strains in the biological control of the phytopathogenic fungi Sclerotium (Athelia) rolfsii on the common bean

2018 ◽  
Vol 432 (1-2) ◽  
pp. 229-243 ◽  
Author(s):  
Camila Gazolla Volpiano ◽  
Bruno Brito Lisboa ◽  
Jackson Freitas Brilhante São José ◽  
Andreia Mara Rotta de Oliveira ◽  
Anelise Beneduzi ◽  
...  
Author(s):  
Alinne da Silva ◽  
◽  
Vinícius I. Franzini ◽  
Cristiano D. Piccolla ◽  
Takashi Muraoka ◽  
...  

ABSTRACT The common bean has been considered to have low biological nitrogen fixation capacity; however, this process can be made more effective with molybdenum (Mo) supplementation. The objective of this study was to evaluate the influence of Mo rates on the growth and biological nitrogen fixation by two Brazilian common bean cultivars using the 15N isotope dilution technique. The experiment was performed in 2014 in a completely randomized design arranged in a 5 x 3 factorial scheme, corresponding to 5 rates of Mo (control, 40, 80, 120 and 240 g ha-1), the common bean cultivars Aporé, Ouro Negro and NORH-54 (a non-nodulating common bean cultivar), and three replicates. The application of Mo and the inoculation with rhizobia strains contributed to improving nitrogen fixation and grain weight. The cultivar Ouro Negro showed a higher number and weight of nodules and a higher amount of nitrogen derived from the atmosphere than the cultivar Aporé. The biological nitrogen fixation of Aporé was more dependent on the application of Mo. These results indicated that inoculation with Rhizobium strains and Mo supply effectively contributed to biological nitrogen fixation and improving grain production.


Author(s):  
Mariangela Hungria ◽  
Ligia Maria O. Chueire ◽  
Diva S. Andrade ◽  
Augustin Probanza ◽  
Francisco J. Guttierrez-Mañero ◽  
...  

2021 ◽  
Vol 34 (1) ◽  
pp. 15-26
Author(s):  
Saoussen Kouki ◽  
Boulbaba L’taief ◽  
Rahamh Al-Qthanin ◽  
Mustapha Rouissi ◽  
Bouaziz Sifi

Increasing interest in using rhizobia as biofertilizers in smallholder agricultural farming systems has prompted scientists to investigate rhizobia diversity, resulting in the identification of many strains. Fifty-five Rhizobium strains nodulating in the common bean (Phaseolus vulgaris L.) were isolated from soil samples from different areas of Tunisia and phenotypically characterized to determine their symbiotic nitrogen fixation capabilities. Their tolerance to pH, salinity, temperature and alkalinity, as well as their cultural and biochemical characteristics indicated wide physiological diversity. These phenotypic characteristics significantly affected rhizobia growth, and strains of interest were identified and used in inoculation trials. They were efficient and able to tolerate pH from 4 to 9, NaCl concentrations of 25 to 100 mM, temperature variation from 10 to 40 °C, and lime (CaCO3) from 0.05 to 0.20 mM. Selected Rhizobium strains were identified as candidates for biofertilizer production for a variety of Tunisian soil types.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evdoxia Efstathiadou ◽  
Georgia Ntatsi ◽  
Dimitrios Savvas ◽  
Anastasia P. Tampakaki

AbstractPhaseolus vulgaris (L.), commonly known as bean or common bean, is considered a promiscuous legume host since it forms nodules with diverse rhizobial species and symbiovars. Most of the common bean nodulating rhizobia are mainly affiliated to the genus Rhizobium, though strains belonging to Ensifer, Pararhizobium, Mesorhizobium, Bradyrhizobium, and Burkholderia have also been reported. This is the first report on the characterization of bean-nodulating rhizobia at the species and symbiovar level in Greece. The goals of this research were to isolate and characterize rhizobia nodulating local common bean genotypes grown in five different edaphoclimatic regions of Greece with no rhizobial inoculation history. The genetic diversity of the rhizobial isolates was assessed by BOX-PCR and the phylogenetic affiliation was assessed by multilocus sequence analysis (MLSA) of housekeeping and symbiosis-related genes. A total of fifty fast-growing rhizobial strains were isolated and representative isolates with distinct BOX-PCR fingerpriniting patterns were subjected to phylogenetic analysis. The strains were closely related to R. anhuiense, R. azibense, R. hidalgonense, R. sophoriradicis, and to a putative new genospecies which is provisionally named as Rhizobium sp. I. Most strains belonged to symbiovar phaseoli carrying the α-, γ-a and γ-b alleles of nodC gene, while some of them belonged to symbiovar gallicum. To the best of our knowledge, it is the first time that strains assigned to R. sophoriradicis and harbored the γ-b allele were found in European soils. All strains were able to re-nodulate their original host, indicating that they are true microsymbionts of common bean.


2010 ◽  
Vol 28 (1) ◽  
pp. 57-71 ◽  
Author(s):  
George S. Mahuku ◽  
María Antonia Henríquez ◽  
Carmenza Montoya ◽  
Carlos Jara ◽  
Henry Teran ◽  
...  

2010 ◽  
Vol 10 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Alisson Fernando Chiorato ◽  
Sérgio Augusto Morais Carbonell ◽  
Roland Vencovsky ◽  
Nelson da Silva Fonseca Júnior ◽  
José Baldin Pinheiro

The goal of the present work was to evaluate the genetic gain obtained in grain yield for the common bean genotypes from 1989 until 2007, at the Instituto Agronômico de Campinas, in the state of São Paulo. Genetic gain has been separated into two research periods; the first, from 1989 to 1996, and the second, from 1997 to 2007. In the first period, a genetic gain of 1.07 % per year was obtained, whereas for the second period, the gain was zero. However, the mean yield of the evaluated lines was approximately 1000 kg ha-1 superior to the figures obtained in the first period. The main cause for the absence of genetic gain in the second period is that the focus of the breeding program was changed to grain quality. The individualized analysis of the genotypes with carioca grains in the second period indicated the lack of genetic gain during the investigated period.


2003 ◽  
Vol 49 (2) ◽  
pp. 81-86 ◽  
Author(s):  
Elizabete HELBIG ◽  
Admar Costa de OLIVEIRA ◽  
Keila da Silva QUEIROZ ◽  
Soely Maria Pissini Machado REIS

Sign in / Sign up

Export Citation Format

Share Document