Influence of Electrolyte Parameters on the Properties of the Ceramic Coatings Deposited on Aluminum Alloy by Plasma Electrolytic Oxidation

2015 ◽  
Vol 54 (1-2) ◽  
pp. 101-105 ◽  
Author(s):  
Sun Chuanyu ◽  
Yu. Wang
2007 ◽  
Vol 447 (1-2) ◽  
pp. 158-162 ◽  
Author(s):  
Wei-Chao Gu ◽  
Guo-Hua Lv ◽  
Huan Chen ◽  
Guang-Liang Chen ◽  
Wen-Ran Feng ◽  
...  

2013 ◽  
Vol 668 ◽  
pp. 875-879
Author(s):  
Jing Guo Miao ◽  
Run Wu ◽  
Qiu Rong Chen ◽  
Kang Da Hao ◽  
Zhong Ling Wei

Four electrolyte (aluminate, silicate, borate and phosphate) solutions were optimized for using in surface treatment of 7075 aluminum alloy by plasma electrolytic oxidation. Microstructure, phase composition and corrosion resistance of ceramic coatings on the surface were analyzed by SEM, X-ray diffraction as well as electrochemical work station. It was showed that ceramic coatings prepared in aluminate solution had excellent continuity, compact structure with micro hardness of HV0.1 1100. The major portion of all coatings consisted of γ-Al2O3 and bits of α-Al2O3, the corrosion potential was increased by a small extent while the corrosion current density was significantly reduced.


2020 ◽  
Vol 67 (1) ◽  
pp. 48-58
Author(s):  
Wanying Liu ◽  
Junjie Yang ◽  
Yuhong Qiu ◽  
Ying Liu ◽  
Kuanhai Deng

Purpose The preferable concentration of titanium carbide was optimized and added as an additive to the micro-arc oxidation electrolyte to produce a high corrosion-resistant coating on D16T aluminum alloy. Design/methodology/approach Ceramic coatings were deposited on D16T aluminum alloy by plasma electrolytic oxidation in alkaline silicate electrolytes with micron titanium carbide particle suspending at different concentrations. Influences of additive concentration on morphology, elemental and phase composition and corrosion resistance of doped PEO coatings were evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and electrochemical methods, respectively. Findings Results revealed that suspending titanium carbide additives incorporated into ceramic coatings through discharging channels and chemically transformed into amorphous stage. The content of titanium in the doped coatings increased with the increasing concentration of suspending micron additive. Compared with the coating without particle addition, the corrosion resistance of the coating produced in 8 g/L titanium carbide suspension increased more than 20 times. The result indicated that the incorporation of titanium into the PEO coatings formed on the D16T aluminum alloy could effectively improve the corrosion resistance. Originality/value The mechanism of corporation of TiC and the mechanism of improving the corrosion resistance of the coating were proposed.


2012 ◽  
Vol 557-559 ◽  
pp. 1664-1667 ◽  
Author(s):  
Yun Long Wang ◽  
Miao Wang ◽  
Zhao Hua Jiang

aluminum nitride ceramic coating were obtained on LY12 aluminum alloy by plasma electrolytic oxidation in CO(NH2)2 electrolyte. The microstructure of the ceramic coating including phase and elements composition, surface and cross section morphology were investigated. The properties of the ceramic coatings such as surface roughness, thickness and bonding strength were primarily studied. The results show that the ceramic coating on LY12 aluminum alloy surface was AlN coating with the thickness of 12 um. The AlN ceramic coating showed rough and porous. The average diameter of the pores was 6 um and the surface roughness was 1.5 um. The bonding strength of the coating was 18 ± 2 MPa.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Dmitry V. Dzhurinskiy ◽  
Stanislav S. Dautov ◽  
Petr G. Shornikov ◽  
Iskander Sh. Akhatov

In the present investigation, the plasma electrolytic oxidation (PEO) process was employed to form aluminum oxide coating layers to enhance corrosion resistance properties of high-strength aluminum alloys. The formed protective coating layers were examined by means of scanning electron microscopy (SEM) and characterized by several electrochemical techniques, including open circuit potential (OCP), linear potentiodynamic polarization (LP) and electrochemical impedance spectroscopy (EIS). The results were reported in comparison with the bare 6061-O aluminum alloy to determine the corrosion performance of the coated 6061-O alloy. The PEO-treated aluminum alloy showed substantially higher corrosion resistance in comparison with the untreated substrate material. A relationship was found between the coating formation stage, process parameters and the thickness of the oxide-formed layers, which has a measurable influence on enhancing corrosion resistance properties. This study demonstrates promising results of utilizing PEO process to enhance corrosion resistance properties of high-strength aluminum alloys and could be recommended as a method used in industrial applications.


Sign in / Sign up

Export Citation Format

Share Document