scholarly journals Photosystem II core quenching in desiccated Leptolyngbya ohadii

2019 ◽  
Vol 143 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Reza Ranjbar Choubeh ◽  
Leeat Bar-Eyal ◽  
Yossi Paltiel ◽  
Nir Keren ◽  
Paul C. Struik ◽  
...  

Abstract Cyanobacteria living in the harsh environment of the desert have to protect themselves against high light intensity and prevent photodamage. These cyanobacteria are in a desiccated state during the largest part of the day when both temperature and light intensity are high. In the desiccated state, their photosynthetic activity is stopped, whereas upon rehydration the ability to perform photosynthesis is regained. Earlier reports indicate that light-induced excitations in Leptolyngbya ohadii are heavily quenched in the desiccated state, because of a loss of structural order of the light-harvesting phycobilisome structures (Bar Eyal et al. in Proc Natl Acad Sci 114:9481, 2017) and via the stably oxidized primary electron donor in photosystem I, namely P700+ (Bar Eyal et al. in Biochim Biophys Acta Bioenergy 1847:1267–1273, 2015). In this study, we use picosecond fluorescence experiments to demonstrate that a third protection mechanism exists, in which the core of photosystem II is quenched independently.

2003 ◽  
Vol 30 (5) ◽  
pp. 515 ◽  
Author(s):  
Katya Georgieva ◽  
Ivanka Fedina ◽  
Liliana Maslenkova ◽  
Violeta Peeva

Barley plants (Hordeum vulgare L.) of wild type and two chlorina mutants, chlorina 126 and chlorina f2, were subjected to 42°C for 5 h at light intensities of 100 and 1000 μmol photons m–2 s–1. The exposure of plants to heat stress at a light intensity of 100 μmol m–2 s–1 induced enormous proline accumulation, indicating that the effect of heat stress was stronger when it was combined with low light intensity. The functional activity of PSII, O2�evolution and flash-induced thermoluminescence B-band amplitude were strongly reduced when plants were exposed to heat at low light intensity. The results clearly showed that high light intensity had a protective effect on photosynthetic activity when barley plants were treated with high temperature. Comparison of the thermosensitivity of wild type plants and chlorina mutants revealed that O2 evolution in chlorina 126 and, especially, in chlorina f2 was more sensitive to heat than in wild type.


2009 ◽  
Vol 34 (12) ◽  
pp. 2196-2201 ◽  
Author(s):  
Xue-Li QI ◽  
Lin HU ◽  
Hai-Bin DONG ◽  
Lei ZHANG ◽  
Gen-Song WANG ◽  
...  

2017 ◽  
Vol 124 ◽  
pp. 331-337 ◽  
Author(s):  
Amir Abdallah ◽  
Ounsi El Daif ◽  
Brahim Aïssa ◽  
Maulid Kivambe ◽  
Nouar Tabet ◽  
...  

2017 ◽  
Vol 129 (2) ◽  
pp. 209-221 ◽  
Author(s):  
Amritpal S. Singh ◽  
A. Maxwell P. Jones ◽  
Mukund R. Shukla ◽  
Praveen K. Saxena

Ethology ◽  
2012 ◽  
Vol 118 (4) ◽  
pp. 341-350 ◽  
Author(s):  
Esteban Fernández-Juricic ◽  
Marcella Deisher ◽  
Amy C. Stark ◽  
Jacquelyn Randolet

2001 ◽  
Vol 52 (365) ◽  
pp. 2345-2354 ◽  
Author(s):  
Paxton Payton ◽  
Robert Webb ◽  
Dmytro Kornyeyev ◽  
Randy Allen ◽  
A. Scott Holaday

Sign in / Sign up

Export Citation Format

Share Document