scholarly journals Embedding of complete graphs in broken Chimera graphs

2021 ◽  
Vol 20 (7) ◽  
Author(s):  
Elisabeth Lobe ◽  
Lukas Schürmann ◽  
Tobias Stollenwerk

AbstractIn order to solve real-world combinatorial optimization problems with a D-Wave quantum annealer, it is necessary to embed the problem at hand into the D-Wave hardware graph, namely Chimera or Pegasus. Most hard real-world problems exhibit a strong connectivity. For the worst-case scenario of a complete graph, there exists an efficient solution for the embedding into the ideal Chimera graph. However, since real machines almost always have broken qubits, it is necessary to find an embedding into the broken hardware graph. We present a new approach to the problem of embedding complete graphs into broken Chimera graphs. This problem can be formulated as an optimization problem, more precisely as a matching problem with additional linear constraints. Although being NP-hard in general, it is fixed-parameter tractable in the number of inaccessible vertices in the Chimera graph. We tested our exact approach on various instances of broken hardware graphs, both related to real hardware and randomly generated. For fixed runtime, we were able to embed larger complete graphs compared to previous, heuristic approaches. As an extension, we developed a fast heuristic algorithm which enables us to solve even larger instances. We compared the performance of our heuristic and exact approaches.

2021 ◽  
pp. 1-21
Author(s):  
Chu-Min Li ◽  
Zhenxing Xu ◽  
Jordi Coll ◽  
Felip Manyà ◽  
Djamal Habet ◽  
...  

The Maximum Satisfiability Problem, or MaxSAT, offers a suitable problem solving formalism for combinatorial optimization problems. Nevertheless, MaxSAT solvers implementing the Branch-and-Bound (BnB) scheme have not succeeded in solving challenging real-world optimization problems. It is widely believed that BnB MaxSAT solvers are only superior on random and some specific crafted instances. At the same time, SAT-based MaxSAT solvers perform particularly well on real-world instances. To overcome this shortcoming of BnB MaxSAT solvers, this paper proposes a new BnB MaxSAT solver called MaxCDCL. The main feature of MaxCDCL is the combination of clause learning of soft conflicts and an efficient bounding procedure. Moreover, the paper reports on an experimental investigation showing that MaxCDCL is competitive when compared with the best performing solvers of the 2020 MaxSAT Evaluation. MaxCDCL performs very well on real-world instances, and solves a number of instances that other solvers cannot solve. Furthermore, MaxCDCL, when combined with the best performing MaxSAT solvers, solves the highest number of instances of a collection from all the MaxSAT evaluations held so far.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
William Cruz-Santos ◽  
Salvador E. Venegas-Andraca ◽  
Marco Lanzagorta

AbstractQuantum annealing algorithms were introduced to solve combinatorial optimization problems by taking advantage of quantum fluctuations to escape local minima in complex energy landscapes typical of NP − hard problems. In this work, we propose using quantum annealing for the theory of cuts, a field of paramount importance in theoretical computer science. We have proposed a method to formulate the Minimum Multicut Problem into the QUBO representation, and the technical difficulties faced when embedding and submitting a problem to the quantum annealer processor. We show two constructions of the quadratic unconstrained binary optimization functions for the Minimum Multicut Problem and we review several tradeoffs between the two mappings and provide numerical scaling analysis results from several classical approaches. Furthermore, we discuss some of the expected challenges and tradeoffs in the implementation of our mapping in the current generation of D-Wave machines.


2021 ◽  
Author(s):  
Mehdy Roayaei

Abstract ‎Grey Wolf Optimizer (GWO) is a population-based evolutionary algorithm inspired by the hunting behaviour of grey wolves‎. ‎GWO‎, ‎in its basic form‎, ‎is a real coded algorithm‎, ‎therefore‎, ‎it needs modifications to deal with binary optimization problems‎. ‎In this paper‎, ‎we review previous works on binarization of GWO‎, ‎and classify them with respect to their encoding scheme‎, ‎updating strategy‎, ‎and transfer function‎. ‎Then‎, ‎we propose a novel binary GWO algorithm (named SetGWO)‎, ‎which is based on set encoding and uses set operations in its updating strategy‎. ‎Experimental results on different real-world combinatorial optimization problems and different datasets‎, ‎show that SetGWO outperforms other existing binary GWO algorithms in terms of quality of solutions‎, ‎running time‎, ‎and scalability‎.


2021 ◽  
Vol 20 (9) ◽  
Author(s):  
Carlos D. Gonzalez Calaza ◽  
Dennis Willsch ◽  
Kristel Michielsen

AbstractWe benchmark the 5000+ qubit system coupled with the Hybrid Solver Service 2 released by D-Wave Systems Inc. in September 2020 by using a new class of optimization problems called garden optimization problems known in companion planting. These problems are scalable to an arbitrarily large number of variables and intuitively find application in real-world scenarios. We derive their QUBO formulation and illustrate their relation to the quadratic assignment problem. We demonstrate that the system and the new hybrid solver can solve larger problems in less time than their predecessors. However, we also show that the solvers based on the 2000+ qubit system sometimes produce more favourable results if they can solve the problems.


Author(s):  
Vyacheslav Korolyov ◽  
Oleksandr Khodzinskyi

Introduction. Quantum computers provide several times faster solutions to several NP-hard combinatorial optimization problems in comparison with computing clusters. The trend of doubling the number of qubits of quantum computers every year suggests the existence of an analog of Moore's law for quantum computers, which means that soon they will also be able to get a significant acceleration of solving many applied large-scale problems. The purpose of the article is to review methods for creating algorithms of quantum computer mathematics for combinatorial optimization problems and to analyze the influence of the qubit-to-qubit coupling and connections strength on the performance of quantum data processing. Results. The article offers approaches to the classification of algorithms for solving these problems from the perspective of quantum computer mathematics. It is shown that the number and strength of connections between qubits affect the dimensionality of problems solved by algorithms of quantum computer mathematics. It is proposed to consider two approaches to calculating combinatorial optimization problems on quantum computers: universal, using quantum gates, and specialized, based on a parameterization of physical processes. Examples of constructing a half-adder for two qubits of an IBM quantum processor and an example of solving the problem of finding the maximum independent set for the IBM and D-wave quantum computers are given. Conclusions. Today, quantum computers are available online through cloud services for research and commercial use. At present, quantum processors do not have enough qubits to replace semiconductor computers in universal computing. The search for a solution to a combinatorial optimization problem is performed by achieving the minimum energy of the system of coupled qubits, on which the task is mapped, and the data are the initial conditions. Approaches to solving combinatorial optimization problems on quantum computers are considered and the results of solving the problem of finding the maximum independent set on the IBM and D-wave quantum computers are given. Keywords: quantum computer, quantum computer mathematics, qubit, maximal independent set for a graph.


2000 ◽  
Vol 8 (3) ◽  
pp. 291-309 ◽  
Author(s):  
Alberto Bertoni ◽  
Marco Carpentieri ◽  
Paola Campadelli ◽  
Giuliano Grossi

In this paper, a genetic model based on the operations of recombination and mutation is studied and applied to combinatorial optimization problems. Results are: The equations of the deterministic dynamics in the thermodynamic limit (infinite populations) are derived and, for a sufficiently small mutation rate, the attractors are characterized; A general approximation algorithm for combinatorial optimization problems is designed. The algorithm is applied to the Max Ek-Sat problem, and the quality of the solution is analyzed. It is proved to be optimal for k≥3 with respect to the worst case analysis; for Max E3-Sat the average case performances are experimentally compared with other optimization techniques.


AI Magazine ◽  
2008 ◽  
Vol 29 (4) ◽  
pp. 47 ◽  
Author(s):  
Matthias Ehrgott

Using some real world examples I illustrate the important role of multiobjective optimization in decision making and its interface with preference handling. I explain what optimization in the presence of multiple objectives means and discuss some of the most common methods of solving multiobjective optimization problems using transformations to single objective optimisation problems. Finally, I address linear and combinatorial optimization problems with multiple objectives and summarize techniques for solving them. Throughout the article, I refer to the real world examples introduced at the beginning.


Sign in / Sign up

Export Citation Format

Share Document