Longitudinal Elastic Modulus and Poisson’s Ratio Computations with Automatic Experimental Data Processing of the Materials

2020 ◽  
Vol 52 (2) ◽  
pp. 329-337
Author(s):  
A. V. Drozdov
1992 ◽  
Vol 59 (2) ◽  
pp. 289-294 ◽  
Author(s):  
Y. H. Won ◽  
A. Fafitis

The salient features and concepts of a model developed in Part I of this paper are reviewed. The model is extended to include dilatancy and shear compaction which are determined from uniaxial stress-strain relationships. The parameters of the model are the peak stress, initial elastic modulus, and tangential Poisson’s ratio. The peak stress is assumed equal to the compressive strength of the concrete specimen, the initial elastic modulus and the Poisson’s ratio is calculated by proposed empirical formulas. Predictions of the model compare favorably with experimental data reported by various investigators. Responses of concrete specimens subjected to prescribed triaxial proportional stresses, triaxial proportional strains and stresses, hydrostatic plus stress combinations with loading paths on the deviatoric stress plane, biaxial compressive, biaxial tensile, and uniaxial tensile loadings are predicted and compared with test data. All predictions are satisfactory.


2013 ◽  
Vol 6 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Ai Chi ◽  
Li Yuwei

Coal body is a type of fractured rock mass in which lots of cleat fractures developed. Its mechanical properties vary with the parametric variation of coal rock block, face cleat and butt cleat. Based on the linear elastic theory and displacement equivalent principle and simplifying the face cleat and butt cleat as multi-bank penetrating and intermittent cracks, the model was established to calculate the elastic modulus and Poisson's ratio of coal body combined with cleat. By analyzing the model, it also obtained the influence of the parameter variation of coal rock block, face cleat and butt cleat on the elastic modulus and Poisson's ratio of the coal body. Study results showed that the connectivity rate of butt cleat and the distance between face cleats had a weak influence on elastic modulus of coal body. When the inclination of face cleat was 90°, the elastic modulus of coal body reached the maximal value and it equaled to the elastic modulus of coal rock block. When the inclination of face cleat was 0°, the elastic modulus of coal body was exclusively dependent on the elastic modulus of coal rock block, the normal stiffness of face cleat and the distance between them. When the distance between butt cleats or the connectivity rate of butt cleat was fixed, the Poisson's ratio of the coal body initially increased and then decreased with increasing of the face cleat inclination.


2021 ◽  
Vol 172 ◽  
pp. 112737
Author(s):  
Jinxin Wang ◽  
Zhimin Liu ◽  
Yuanzhe Zhao ◽  
Yahong Xie ◽  
Yuanlai Xie

2021 ◽  
pp. 107754632110026
Author(s):  
Zhou Sun ◽  
Siyu Chen ◽  
Xuan Tao ◽  
Zehua Hu

Under high-speed and heavy-load conditions, the influence of temperature on the gear system is extremely important. Basically, the current work on the effect of temperature mostly considers the flash temperature or the overall temperature field to cause expansion at the meshing point and then affects nonlinear factors such as time-varying meshing stiffness, which lead to the deterioration of the dynamic transmission. This work considers the effect of temperature on the material’s elastic modulus and Poisson’s ratio and relates the temperature to the time-varying meshing stiffness. The effects of temperature on the elastic modulus and Poisson’s ratio are expressed as functions and brought into the improved energy method stiffness calculation formula. Then, the dynamic characteristics of the gear system are analyzed. With the bifurcation diagram, phase, Poincaré, and fast Fourier transform plots of the gear system, the influence of temperature on the nonlinear dynamics of the gear system is discussed. The numerical analysis results show that as the temperature increases, the dynamic response of the system in the middle-speed region gradually changes from periodic motion to chaos.


2021 ◽  
Author(s):  
Meng Meng ◽  
Luke Frash ◽  
James Carey ◽  
Wenfeng Li ◽  
Nathan Welch ◽  
...  

Abstract Accurate characterization of oilwell cement mechanical properties is a prerequisite for maintaining long-term wellbore integrity. The drawback of the most widely used technique is unable to measure the mechanical property under in situ curing environment. We developed a high pressure and high temperature vessel that can hydrate cement under downhole conditions and directly measure its elastic modulus and Poisson's ratio at any interested time point without cooling or depressurization. The equipment has been validated by using water and a reasonable bulk modulus of 2.37 GPa was captured. Neat Class G cement was hydrated in this equipment for seven days under axial stress of 40 MPa, and an in situ measurement in the elastic range shows elastic modulus of 37.3 GPa and Poisson's ratio of 0.15. After that, the specimen was taken out from the vessel, and setted up in the triaxial compression platform. Under a similar confining pressure condition, elastic modulus was 23.6 GPa and Possion's ratio was 0.26. We also measured the properties of cement with the same batch of the slurry but cured under ambient conditions. The elastic modulus was 1.63 GPa, and Poisson's ratio was 0.085. Therefore, we found that the curing condition is significant to cement mechanical property, and the traditional cooling or depressurization method could provide mechanical properties that were quite different (50% difference) from the in situ measurement.


2016 ◽  
Vol 11 (04) ◽  
pp. P04022-P04022 ◽  
Author(s):  
A. Morozov ◽  
V. Solovov ◽  
R. Martins ◽  
F. Neves ◽  
V. Domingos ◽  
...  

Author(s):  
John J. Quicksall ◽  
Robert L. Jackson ◽  
Itzhak Green

This work uses the finite element technique to model the elasto-plastic deformation of a hemisphere contacting a rigid flat for various material properties typical of aluminum, bronze, copper, titanium and malleable cast iron. Additionally, this work conducted parametric FEM tests on a generic material in which the elastic modulus and Poisson’s ratio are varied independently while the yield strength is held constant. A larger spectrum of material properties are covered in this work than in most previous works. The results are compared to two previously formulated elasto-plastic models simulating the deformation of a hemisphere in contact with a rigid flat. Both of the previously formulated models use carbon steel mechanical properties to arrive at empirical formulations implied to pertain to various materials. While both models considered several carbon steels with varying yield strengths, they did not test materials with varying Poisson’s ratio or elastic modulus. The previously generated elasto-plastic models give fairly good predictions when compared to the FEM results for various material properties from the current work, except that one model produces more accurate predictions overall, especially at large deformations where other models neglect important trends due to decreases in “hardness” with increasing deformation.


Sign in / Sign up

Export Citation Format

Share Document