A Novel Autotrophic Bacterium Isolated from an Engineered Wetland System Links Nitrate-Coupled Iron Oxidation to the Removal of As, Zn and S

2013 ◽  
Vol 224 (4) ◽  
Author(s):  
Al Mattes ◽  
Douglas Gould ◽  
Marcus Taupp ◽  
Susan Glasauer
2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Dileep Kumar Yeruva ◽  
Palle Ranadheer ◽  
A. Kiran Kumar ◽  
S. Venkata Mohan

2013 ◽  
Vol 726-731 ◽  
pp. 1778-1781
Author(s):  
Jian She Yang ◽  
Xiao Dan Ke

Constructed wetland conduct technology is a kind of artificialgovernable and engineered wetland system. A multiplied technology combination of "Hydrolysis precipitation, Contact oxidation and Constructed wetland" has been applied to conduct the domestic sewage of the towns, and the combination of that, the treatment effect and the working cost have been discussed here. The testing results of outlet water quality indexes showed as following, the removal rate of the CODCr was reach to 77.8%, the removal rate of the BOD5 was reach to 83.3%, the removal rate of the T-P was reach to 87%, the removal rate of the SS was reach 80% and the removal rate of the NH3-N was reach 67%.


2015 ◽  
Vol 1 (5) ◽  
pp. 235-242
Author(s):  
Édio Damásio da Silva Júnior ◽  
Rogério de Araújo Almeida ◽  
Elisa Rodrigues Siqueira ◽  
Ábio Roduvalho da Silva

2000 ◽  
Vol 42 (5-6) ◽  
pp. 371-376 ◽  
Author(s):  
J.A. Puhakka ◽  
K.T. Järvinen ◽  
J.H. Langwaldt ◽  
E.S. Melin ◽  
M.K. Männistö ◽  
...  

This paper reviews ten years of research on on-site and in situ bioremediation of chlorophenol contaminated groundwater. Laboratory experiments on the development of a high-rate, fluidized-bed process resulted in a full-scale, pump-and-treat application which has operated for several years. The system operates at ambient groundwater temperature of 7 to 9°C at 2.7 d hydraulic retention time and chlorophenol removal efficiencies of 98.5 to 99.9%. The microbial ecology studies of the contaminated aquifer revealed a diverse chlorophenol-degrading community. In situ biodegradation of chlorophenols is controlled by oxygen availability, only. Laboratory and pilot-scale experiments showed the potential for in situ aquifer bioremediation with iron oxidation and precipitation as a potential problem.


Author(s):  
David L. Kirchman

Geomicrobiology, the marriage of geology and microbiology, is about the impact of microbes on Earth materials in terrestrial systems and sediments. Many geomicrobiological processes occur over long timescales. Even the slow growth and low activity of microbes, however, have big effects when added up over millennia. After reviewing the basics of bacteria–surface interactions, the chapter moves on to discussing biomineralization, which is the microbially mediated formation of solid minerals from soluble ions. The role of microbes can vary from merely providing passive surfaces for mineral formation, to active control of the entire precipitation process. The formation of carbonate-containing minerals by coccolithophorids and other marine organisms is especially important because of the role of these minerals in the carbon cycle. Iron minerals can be formed by chemolithoautotrophic bacteria, which gain a small amount of energy from iron oxidation. Similarly, manganese-rich minerals are formed during manganese oxidation, although how this reaction benefits microbes is unclear. These minerals and others give geologists and geomicrobiologists clues about early life on Earth. In addition to forming minerals, microbes help to dissolve them, a process called weathering. Microbes contribute to weathering and mineral dissolution through several mechanisms: production of protons (acidity) or hydroxides that dissolve minerals; production of ligands that chelate metals in minerals thereby breaking up the solid phase; and direct reduction of mineral-bound metals to more soluble forms. The chapter ends with some comments about the role of microbes in degrading oil and other fossil fuels.


2005 ◽  
Vol 51 (12) ◽  
pp. 325-329 ◽  
Author(s):  
X. Wang ◽  
X. Bai ◽  
J. Qiu ◽  
B. Wang

The performance of a pond–constructed wetland system in the treatment of municipal wastewater in Kiaochow city was studied; and comparison with oxidation ponds system was conducted. In the post-constructed wetland, the removal of COD, TN and TP is 24%, 58.5% and 24.8% respectively. The treated effluent from the constructed wetland can meet the Chinese National Agricultural and Irrigation Standard. The comparison between pond–constructed wetland system and oxidation pond system shows that total nitrogen removal in a constructed wetland is better than that in an oxidation pond and the TP removal is inferior. A possible reason is the low dissolved oxygen concentration in the wetland. Constructed wetlands can restrain the growth of algae effectively, and can produce obvious ecological and economical benefits.


1994 ◽  
Vol 30 (8) ◽  
pp. 235-244 ◽  
Author(s):  
M. Hosomi ◽  
A. Murakami ◽  
R. Sudo

In order to clarify the natural purification potential of a natural wetland having free-flowing water, we performed a four-year study on such a wetland system which had been receiving for 12 years the domestic wastewater discharged from a residential area comprised of 45 households. The wetland's removal rate of organic matter throughout the four years ranged from 80% for COD to 95% for BOD, whereas the corresponding nitrogen removal rate was comparatively lower. Results indicate that NH4-N release from the bottom sediment and repression of nitrification are the main factors responsible for the wetland's low removal rate of nitrogen during winter. The wetland purification performance even in winter was determined as follows (g m−2 d−1): 2.2 BOD, 0.81 COD, 1.1 TOC, 0.10 T-N, and 0.023 T-P.


Sign in / Sign up

Export Citation Format

Share Document