Removal of Amoxicillin in Aqueous Solution by a Novel Chicken Feather Carbon: Kinetic and Equilibrium Studies

2017 ◽  
Vol 228 (6) ◽  
Author(s):  
Huiqin Li ◽  
Jingtao Hu ◽  
Chuan Wang ◽  
Xiaojing Wang
2017 ◽  
Vol 73 (3) ◽  
Author(s):  
Osasona Ilesanmi ◽  
Adebayo Albert Ojo ◽  
Okronkwo Elvis Afemafuna ◽  
Johnson Jonathan ◽  
Osunlana Oluronke

Author(s):  
Conrad K. Enenebeaku ◽  
Nnaemeka J. Okorocha ◽  
Uchechi E. Enenebeaku ◽  
Ikechukwu C. Ukaga

The potential of white potato peel powder for the removal of methyl red (MR) dye from aqueous solution was investigated. The adsorbent was characterized by FTIR and SEM analysis. Batch adsorption studies were conducted and various parameters such as contact time, adsorbent dosage, initial dye concentration, pH and temperature were studied to observe their effects in the dye adsorption process. The optimum conditions for the adsorption of MR onto the adsorbent (WPPP) was found to be contact (80 mins), pH (2) and temperature (303K) for an initial MR dye concentration of 50mg/l and adsorbent dose of 1.0g. The experimental equilibrium adsorption data of the (MR) dye fitted best and well to the Freundlich isotherm model. The maximum adsorption capacity was found to be 30.48mg/g for the adsorption of MR. The kinetic data conforms to the pseudo – second order kinetic model.


2020 ◽  
Author(s):  
Edu J. Inam ◽  
John Bassey Edet ◽  
Patrick E. Akpan ◽  
Kufre E. Ite

Abstract The surface characteristics as well as adsorption potential of activated cow bone char for the removal of methylene blue (MB) from aqueous solution were investigated. Physical characteristics of the adsorbent revealed a large surface area, low pore volume, reduced ash and moisture contents, which have been identified as good adsorption characteristics. The surface of the adsorbent was predominated by mesopores with a few microporous structures as well as the presence of carbonates, phosphates, silicates and hydroxyl groups which are characteristic of the apatite phase. Adsorption efficiency for the removal of MB was observed to be influenced by pH, adsorbent dosage as well as initial dye concentrations. Equilibrium adsorption data was best described by the Freundlich isotherm with a good correlation coefficient suggesting multilayer adsorption of the dye molecules on the surface of the adsorbent. Based on the drive for reduced cost, removal efficiency and availability, activated carbon from cow bone could be a promising adsorbent for methylene blue-laden effluent that could be utilized in small and large industrial applications.


2020 ◽  
Vol 14 (2) ◽  
pp. 24-41
Author(s):  
John Akinyeye Olayinka ◽  
Babatunde Ibigbami Tope ◽  
Oluwakayode Odeja Olubunmi ◽  
Moses Sosanolu Omoniyi

1984 ◽  
Vol 83 (2) ◽  
pp. L41-L43 ◽  
Author(s):  
Adegboye O. Adeyemo ◽  
M. Krishnamurthy

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
O. O. Ajayi ◽  
A. O. Adebayo

The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document