Effects of Elevated CO2 Concentrations on Leaf Senescence and Late-Season Net Photosynthesis of Red Maple (Acer rubrum)

2020 ◽  
Vol 231 (9) ◽  
Author(s):  
Li Li ◽  
William Manning ◽  
Xiaoke Wang
HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1058A-1058
Author(s):  
William W. Inman ◽  
William L. Bauerle

Recent work has shown that stomatal conductance (gs) and net photosynthesis (Anet) are responsive to the hydraulic conductance of the soil to leaf pathway (Xp). Two tree species with differing xylem structures were used to study the effect of systematic manipulations in Xp that elevated xylem hydraulic resistance. Simultaneous measures of gs, Anet, bulk leaf abscisic acid concentration (ABAL), leaf water potential (L), and whole plant transpiration (Ew) were taken under controlled environment conditions. Quercus shumardii Buckl. (shumard oak), a ring porous species and Acer rubrum L. `Summer Red' (red maple), a diffuse porous species, were studied to investigate the short-term hydraulic and chemical messenger response to drought. Both species decreased Anet, gs, L, and Ew in response to an immediate substrate moisture alteration. Relative to initial well-watered values, red maple Anet, gs, and Ew declined more than shumard oak. However, gs and Anet vs. whole-plant leaf specific hydraulic resistance was greater in shumard oak. In addition, the larger hydraulic resistance in shumard oak was attributed to higher shoot, as opposed to root, system resistance. The results indicate hydraulic resistance differences that may be attributed to the disparate xylem anatomy between the two species. This study also provides evidence to support the short-term hydraulic signal negative feedback link hypothesis between gs and the cavitation threshold, as opposed to chemical signaling via rapid accumulation from root-synthesized ABA.


2020 ◽  
Author(s):  
Chen Zhu ◽  
Lu Xiaoyu ◽  
Gao Junlan ◽  
Xuan Yun ◽  
Jie Ren

Abstract Background: To fully elucidate the roles and mechanisms of plant hormones in leaf senescence, we adopted an integrated analysis of both non-senescing and senescing leaves from red maple with transcriptome and metabolome data.Results: Transcription and metabolite profiles were generated through a combination of deep sequencing, third-generation sequencing data analysis, and ultrahigh-performance liquid chromatograph Q extractive mass spectrometry (UHPLC-QE-MS), respectively. We investigated the accumulation of compounds and the expression of biosynthesis and signaling genes for eight hormones. The results revealed that ethylene and abscisic acid concentrations increased during the leaf senescence process, while the contents of cytokinin, auxin, jasmonic acid, and salicylic acid continued to decrease. Correlation tests between the hormone content and transcriptional changes were analyzed, and in six pathways, genes closely linked with leaf senescence were identified.Conclusions: These results will enrich our understanding of the mechanisms of plant hormones that regulate leaf senescence in red maple, while establishing a foundation for the genetic modification of Acer in the future.


Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 420 ◽  
Author(s):  
Li Li ◽  
William Manning ◽  
Xiaoke Wang

To understand whether the process of seasonal nitrogen resorption and biomass allocation are different in CO2-enriched plants, seedlings of red maple (Acer rubrum L.) were exposed to three CO2 concentrations (800 µL L−1 CO2 treatments—A800, 600 µL L−1 CO2 treatments—A600, and 400 µL L−1 CO2 treatments—A400) in nine continuous stirred tank reactor (CSTR) chambers. Leaf mass per area, leaf area, chlorophyll index, carbon (C), nitrogen (N) contents, nitrogen resorption efficiency (NRE), and biomass allocation response were investigated. The results indicated that: (1) Significant leaf N decline was found in senescent leaves of two CO2 treatments, which led to an increase of 43.4% and 39.7% of the C/N ratio in A800 and A600, respectively. (2) Elevated CO2 induced higher NRE, with A800 and A600 showing significant increments of 50.3% and 46.2%, respectively. (3) Root biomass increased 33.1% in A800 and thus the ratio of root to shoot ratio was increased by 25.8%. In conclusion, these results showed that to support greater nutrient and water uptake and the continued response of biomass under elevated CO2, Acer rubrum partitioned more biomass to root and increased leaf N resorption efficiency.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1072
Author(s):  
T. Casey Barickman ◽  
Omolayo J. Olorunwa ◽  
Akanksha Sehgal ◽  
C. Hunt Walne ◽  
K. Raja Reddy ◽  
...  

Early season sowing is one of the methods for avoiding yield loss for basil due to high temperatures. However, basil could be exposed to sub-optimal temperatures by planting it earlier in the season. Thus, an experiment was conducted that examines how temperature changes and carbon dioxide (CO2) levels affect basil growth, development, and phytonutrient concentrations in a controlled environment. The experiment simulated temperature stress, low (20/12 °C), and high (38/30 °C), under ambient (420 ppm) and elevated (720 ppm) CO2 concentrations. Low-temperature stress prompted the rapid closure of stomata resulting in a 21% decline in net photosynthesis. Chlorophylls and carotenoids decreased when elevated CO2 interacted with low-temperature stress. Basil exhibited an increase in stomatal conductance, intercellular CO2 concentration, apparent quantum yield, maximum photosystem II efficiency, and maximum net photosynthesis rate when subjected to high-temperature stress. Under elevated CO2, increasing the growth temperature from 30/22 °C to 38/30 °C markedly increased the antioxidants content of basil. Taken together, the evidence from this research recommends that varying the growth temperature of basil plants can significantly affect the growth and development rates compared to increasing the CO2 concentrations, which mitigates the adverse effects of temperature stress.


2020 ◽  
Author(s):  
Chen Zhu ◽  
Lu Xiaoyu ◽  
Gao Junlan ◽  
Xuan Yun ◽  
Jie Ren

Abstract Background: To fully elucidate the roles and mechanisms of plant hormones in leaf senescence, we adopted an integrated analysis of both non-senescing and senescing leaves from red maple with transcriptome and metabolome data.Results: Transcription and metabolite profiles were generated through a combination of deep sequencing, third-generation sequencing data analysis, and ultrahigh-performance liquid chromatograph Q extractive mass spectrometry (UHPLC-QE-MS), respectively. We investigated the accumulation of compounds and the expression of biosynthesis and signaling genes for eight hormones. The results revealed that ethylene and abscisic acid concentrations increased during the leaf senescence process, while the contents of cytokinin, auxin, jasmonic acid, and salicylic acid continued to decrease. Correlation tests between the hormone content and transcriptional changes were analyzed, and in six pathways, genes closely linked with leaf senescence were identified.Conclusions: These results will enrich our understanding of the mechanisms of plant hormones that regulate leaf senescence in red maple, while establishing a foundation for the genetic modification of Acer in the future.


2009 ◽  
Vol 36 (4) ◽  
pp. 291 ◽  
Author(s):  
Chunwu Zhu ◽  
Jianguo Zhu ◽  
Qing Zeng ◽  
Gang Liu ◽  
Zubing Xie ◽  
...  

It was anticipated that wheat net photosynthesis would rise under elevated CO2, and that this would alter the progress of senescence due to the unbalance of carbohydrates and nitrogen. Our study showed that ear carbon sink was limited, and sugar was accumulated, hexokinase activities and levels of phosphorylated sugar were increased within the flag leaves, grain nitrogen sink capacity was enhanced, and flag leaf senescence was accelerated under elevated CO2. However, if the ear of the main stem was covered, these responses to elevated CO2 were absent, and the senescence of flag leaf was not accelerated by elevated CO2. Thus, it appeared that elevated CO2 accelerated the rate of flag leaf senescence, depending on ear photosynthesis. The ears have far higher enhancement of net photosynthesis than flag leaves, and the role of the flag leaf relative to the ear was declined in supplying C assimilation to grain under elevated CO2. This indicates that as CO2 rises, the grain sink needs the N more than C assimilate from flag leaf, so the declining rates of N% and soluble proteins concentration were markedly accelerated under elevated CO2 conditions. This suggests that, the large increase in ear net photosynthesis accelerated grain filling, accelerated remobilising N within flag leaf as the result of the greater grain nitrogen sink capacity. In addition, as the result of grain carbon sink limitation, it limited the export of flag leaf sucrose and enhanced sugar cycling, which was the signal to accelerate leaf senescence. Hence, elevated CO2 subsequently accelerates senescence of flag leaf.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 482b-482
Author(s):  
Jeff L. Sibley ◽  
D. Joseph Eakes ◽  
Charles H. Gilliam ◽  
William A. Dozier

Net photosynthesis (Pn), stomatal conductance (Cs), transpiration (Ts), and water use efficiency (WUE) were determined with a LICOR 6250 Portable Photosynthesis System for four cultivars of Acer rubrum L. under light intensities ranging from 300 to 1950 μmol·m-2·sec-1 photosynthetically active radiation (PAR). As PAR increased, there was a linear relationship for Pn, Cs, and Ts for the cultivars `Franksred' (Red Sunset TM) and `October Glory'. In contrast, the cultivars `Schlesingeri' and `Northwood' had quadratic relationships for Pn and Cs as PAR increased. Ts was quadratic for `Schlesingeri' and had a linear relationship for `Northwood.' WUE was quadratic for each of the four cultivars.


2020 ◽  
Author(s):  
Chen Zhu ◽  
Lu Xiaoyu ◽  
Gao Junlan ◽  
Xuan Yun ◽  
Jie Ren

Abstract Background: To fully elucidate the roles and mechanisms of plant hormones in leaf senescence, we adopted an integrated analysis of both non-senescing and senescing leaves from red maple with transcriptome and metabolome data. Results: Transcription and metabolite profiles were generated through a combination of deep sequencing, third-generation sequencing data analysis, and ultrahigh-performance liquid chromatograph Q extractive mass spectrometry (UHPLC-QE-MS), respectively. We investigated the accumulation of compounds and the expression of biosynthesis and signaling genes for eight hormones. The results revealed that ethylene and abscisic acid concentrations increased during the leaf senescence process, while the contents of cytokinin, auxin, jasmonic acid, and salicylic acid continued to decrease. Correlation tests between the hormone content and transcriptional changes were analyzed, and in six pathways, genes closely linked with leaf senescence were identified. Conclusions: These results will enrich our understanding of the mechanisms of plant hormones that regulate leaf senescence in red maple, while establishing a foundation for the genetic modification of Acer in the future.


Sign in / Sign up

Export Citation Format

Share Document