Intrusion detection techniques in network environment: a systematic review

2021 ◽  
Author(s):  
Maruthi Rohit Ayyagari ◽  
Nishtha Kesswani ◽  
Munish Kumar ◽  
Krishan Kumar
Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 656
Author(s):  
Xavier Larriva-Novo ◽  
Víctor A. Villagrá ◽  
Mario Vega-Barbas ◽  
Diego Rivera ◽  
Mario Sanz Rodrigo

Security in IoT networks is currently mandatory, due to the high amount of data that has to be handled. These systems are vulnerable to several cybersecurity attacks, which are increasing in number and sophistication. Due to this reason, new intrusion detection techniques have to be developed, being as accurate as possible for these scenarios. Intrusion detection systems based on machine learning algorithms have already shown a high performance in terms of accuracy. This research proposes the study and evaluation of several preprocessing techniques based on traffic categorization for a machine learning neural network algorithm. This research uses for its evaluation two benchmark datasets, namely UGR16 and the UNSW-NB15, and one of the most used datasets, KDD99. The preprocessing techniques were evaluated in accordance with scalar and normalization functions. All of these preprocessing models were applied through different sets of characteristics based on a categorization composed by four groups of features: basic connection features, content characteristics, statistical characteristics and finally, a group which is composed by traffic-based features and connection direction-based traffic characteristics. The objective of this research is to evaluate this categorization by using various data preprocessing techniques to obtain the most accurate model. Our proposal shows that, by applying the categorization of network traffic and several preprocessing techniques, the accuracy can be enhanced by up to 45%. The preprocessing of a specific group of characteristics allows for greater accuracy, allowing the machine learning algorithm to correctly classify these parameters related to possible attacks.


2021 ◽  
Vol 21 (4) ◽  
pp. 1-22
Author(s):  
Safa Otoum ◽  
Burak Kantarci ◽  
Hussein Mouftah

Volunteer computing uses Internet-connected devices (laptops, PCs, smart devices, etc.), in which their owners volunteer them as storage and computing power resources, has become an essential mechanism for resource management in numerous applications. The growth of the volume and variety of data traffic on the Internet leads to concerns on the robustness of cyberphysical systems especially for critical infrastructures. Therefore, the implementation of an efficient Intrusion Detection System for gathering such sensory data has gained vital importance. In this article, we present a comparative study of Artificial Intelligence (AI)-driven intrusion detection systems for wirelessly connected sensors that track crucial applications. Specifically, we present an in-depth analysis of the use of machine learning, deep learning and reinforcement learning solutions to recognise intrusive behavior in the collected traffic. We evaluate the proposed mechanisms by using KDD’99 as real attack dataset in our simulations. Results present the performance metrics for three different IDSs, namely the Adaptively Supervised and Clustered Hybrid IDS (ASCH-IDS), Restricted Boltzmann Machine-based Clustered IDS (RBC-IDS), and Q-learning based IDS (Q-IDS), to detect malicious behaviors. We also present the performance of different reinforcement learning techniques such as State-Action-Reward-State-Action Learning (SARSA) and the Temporal Difference learning (TD). Through simulations, we show that Q-IDS performs with detection rate while SARSA-IDS and TD-IDS perform at the order of .


2020 ◽  
Vol 19 (4) ◽  
pp. 35-41
Author(s):  
Martin ŠTANCEL ◽  
◽  
Martin CHOVANEC ◽  
Eva CHOVANCOVÁ

Author(s):  
Juma Ibrahim ◽  
Slavko Gajin

Entropy-based network traffic anomaly detection techniques are attractive due to their simplicity and applicability in a real-time network environment. Even though flow data provide only a basic set of information about network communications, they are suitable for efficient entropy-based anomaly detection techniques. However, a recent work reported a serious weakness of the general entropy-based anomaly detection related to its susceptibility to deception by adding spoofed data that camouflage the anomaly. Moreover, techniques for further classification of the anomalies mostly rely on machine learning, which involves additional complexity. We address these issues by providing two novel approaches. Firstly, we propose an efficient protection mechanism against entropy deception, which is based on the analysis of changes in different entropy types, namely Shannon, R?nyi, and Tsallis entropies, and monitoring the number of distinct elements in a feature distribution as a new detection metric. The proposed approach makes the entropy techniques more reliable. Secondly, we have extended the existing entropy-based anomaly detection approach with the anomaly classification method. Based on a multivariate analysis of the entropy changes of multiple features as well as aggregation by complex feature combinations, entropy-based anomaly classification rules were proposed and successfully verified through experiments. Experimental results are provided to validate the feasibility of the proposed approach for practical implementation of efficient anomaly detection and classification method in the general real-life network environment.


Sign in / Sign up

Export Citation Format

Share Document