scholarly journals An IoT-Focused Intrusion Detection System Approach Based on Preprocessing Characterization for Cybersecurity Datasets

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 656
Author(s):  
Xavier Larriva-Novo ◽  
Víctor A. Villagrá ◽  
Mario Vega-Barbas ◽  
Diego Rivera ◽  
Mario Sanz Rodrigo

Security in IoT networks is currently mandatory, due to the high amount of data that has to be handled. These systems are vulnerable to several cybersecurity attacks, which are increasing in number and sophistication. Due to this reason, new intrusion detection techniques have to be developed, being as accurate as possible for these scenarios. Intrusion detection systems based on machine learning algorithms have already shown a high performance in terms of accuracy. This research proposes the study and evaluation of several preprocessing techniques based on traffic categorization for a machine learning neural network algorithm. This research uses for its evaluation two benchmark datasets, namely UGR16 and the UNSW-NB15, and one of the most used datasets, KDD99. The preprocessing techniques were evaluated in accordance with scalar and normalization functions. All of these preprocessing models were applied through different sets of characteristics based on a categorization composed by four groups of features: basic connection features, content characteristics, statistical characteristics and finally, a group which is composed by traffic-based features and connection direction-based traffic characteristics. The objective of this research is to evaluate this categorization by using various data preprocessing techniques to obtain the most accurate model. Our proposal shows that, by applying the categorization of network traffic and several preprocessing techniques, the accuracy can be enhanced by up to 45%. The preprocessing of a specific group of characteristics allows for greater accuracy, allowing the machine learning algorithm to correctly classify these parameters related to possible attacks.

Author(s):  
Amudha P. ◽  
Sivakumari S.

In recent years, the field of machine learning grows very fast both on the development of techniques and its application in intrusion detection. The computational complexity of the machine learning algorithms increases rapidly as the number of features in the datasets increases. By choosing the significant features, the number of features in the dataset can be reduced, which is critical to progress the classification accuracy and speed of algorithms. Also, achieving high accuracy and detection rate and lowering false alarm rates are the major challenges in designing an intrusion detection system. The major motivation of this work is to address these issues by hybridizing machine learning and swarm intelligence algorithms for enhancing the performance of intrusion detection system. It also emphasizes applying principal component analysis as feature selection technique on intrusion detection dataset for identifying the most suitable feature subsets which may provide high-quality results in a fast and efficient manner.


2020 ◽  
Vol 7 (2) ◽  
pp. 329
Author(s):  
Eka Lailatus Sofa ◽  
Subiyanto Subiyanto

<p class="Abstrak"><em>Internet of Things</em> (IoT) telah memasuki berbagai aspek kehidupan manusia, diantaranya <em>smart city, smart home, smart street, </em>dan<em> smart industry </em>yang memanfaatkan internet untuk memantau informasi yang dibutuhkan<em>.</em> Meskipun sudah dienkripsi dan diautentikasi, protokol jaringan <a title="IPv6" href="https://en.wikipedia.org/wiki/IPv6">IPv6</a> over Low-Power Wireless <a title="Personal area network" href="https://en.wikipedia.org/wiki/Personal_area_network">Personal Area Networks</a> (6LoWPAN) yang dapat menghubungkan benda-benda yang terbatas sumber daya di IoT masih belum dapat diandalkan. Hal ini dikarenakan benda-benda tersebut masih dapat terpapar oleh <em>routing attacks</em> yang berasal dari jaringan 6LoWPAN dan internet. Makalah ini menyajikan kinerja <em>Smart Intrusion Detection System</em> berdasarkan <em>Compression Header Analyzer</em> untuk menganalisis model <em>routing attacks</em> lainnya pada jaringan IoT. IDS menggunakan <em>compression header</em> 6LoWPAN sebagai fitur untuk <em>machine learning algorithm</em> dalam mempelajari jenis <em>routing attacks</em>. Skenario simulasi dikembangkan untuk mendeteksi <em>routing attacks</em> berupa <em>selective forwarding attack</em> dan <em>sinkhole attack</em>. Pengujian dilakukan menggunakan <em>feature selection</em> dan <em>machine learning algorithm</em>. <em>Feature selection</em> digunakan untuk menentukan fitur signifikan yang dapat membedakan antara aktivitas normal dan abnormal. Sementara <em>machine learning algorithm</em> digunakan untuk mengklasifikasikan <em>routing attacks</em> pada jaringan IoT. Ada tujuh <em>machine learning algorithm</em> yang digunakan dalam klasifikasi antara lain <em>Random Forest, Random Tree, J48, Bayes Net, JRip, SMO,</em> dan <em>Naive Bayes</em>. Hasil percobaan disajikan untuk menunjukkan kinerja <em>Smart Intrusion Detection System</em> berdasarkan <em>Compression Header Analyzer</em> dalam menganalisis <em>routing attacks</em>. Hasil evaluasi menunjukkan bahwa IDS ini dapat mendeteksi antara serangan dan <em>non-</em>serangan.</p><p class="Abstrak"> </p><p class="Abstrak"><em><strong>Abstract</strong></em></p><p class="Abstract"><em>Internet of Things (IoT) has entered various aspects of human life including smart city, smart home, smart street, and smart industries that use the internet to get the information they need. Even though it's encrypted and authenticated, Internet protocol  <a title="IPv6" href="https://en.wikipedia.org/wiki/IPv6">IPv6</a> over Low-Power Wireless <a title="Personal area network" href="https://en.wikipedia.org/wiki/Personal_area_network">Personal Area Networks</a> (6LoWPAN) networks that can connect limited resources to IoT are still unreliable. This is because these objects can still be exposed to attacks from 6LoWPAN and the internet. This paper presents the performance of an Smart Intrusion Detection System based on Compression Header Analyzer to analyze other routing attack models on IoT networks. IDS uses a 6LoWPAN compression header as a feature for machine learning algorithms in learning the types of routing attacks. Simulation scenario was developed to detect routing attacks in the form of selective forwarding and sinkhole. Testing is done using the feature selection and machine learning algorithm. Feature selection is used to determine significant features that can distinguish between normal and abnormal activities. While machine learning algorithm is used to classify attacks on IoT networks. There were seven machine learning algorithms used in the classification including Random Forests, Random Trees, J48, Bayes Net, JRip, SMO, and Naive Bayes. Experiment Results to show the results of the Smart Intrusion Detection System based on Compression Header Analyzer in analyzing routing attacks. The evaluation results show that this IDS can protect between attacks and non-attacks.</em><strong></strong></p><p class="Abstrak"><em><strong><br /></strong></em></p>


Author(s):  
Manuel Gonçalves da Silva Neto ◽  
Danielo G. Gomes

With the increasing popularization of computer network-based technologies, security has become a daily concern, and intrusion detection systems (IDS) play an essential role in the supervision of computer networks. An employed approach to combat network intrusions is the development of intrusion detection systems via machine learning techniques. The intrusion detection performance of these systems depends highly on the quality of the IDS dataset used in their design and the decision making for the most suitable machine learning algorithm becomes a difficult task. The proposed paper focuses on evaluate and accurate the model of intrusion detection system of different machine learning algorithms on two resampling techniques using the new CICIDS2017 dataset where Decision Trees, MLPs, and Random Forests on Stratified 10-Fold gives high stability in results with Precision, Recall, and F1-Scores of 98% and 99% with low execution times.


At present networking technologies has provided a better medium for people to communicate and exchange information on the internet. This is the reason in the last ten years the number of internet users has increased exponentially. The high-end use of network technology and the internet has also presented many security problems. Many intrusion detection techniques are proposed in combination with KDD99, NSL-KDD datasets. But there are some limitations of available datasets. Intrusion detection using machine learning algorithms makes the detection system more accurate and fast. So in this paper, a new hybrid approach of machine learning combining feature selection and classification algorithms is presented. The model is examined with the UNSW NB15 intrusion dataset. The proposed model has achieved better accuracy rate and attack detection also improved while the false attack rate is reduced. The model is also successful to accurately classify rare cyber attacks like worms, backdoor, and shellcode.


2020 ◽  
Vol 5 (19) ◽  
pp. 32-35
Author(s):  
Anand Vijay ◽  
Kailash Patidar ◽  
Manoj Yadav ◽  
Rishi Kushwah

In this paper an analytical survey on the role of machine learning algorithms in case of intrusion detection has been presented and discussed. This paper shows the analytical aspects in the development of efficient intrusion detection system (IDS). The related study for the development of this system has been presented in terms of computational methods. The discussed methods are data mining, artificial intelligence and machine learning. It has been discussed along with the attack parameters and attack types. This paper also elaborates the impact of different attack and handling mechanism based on the previous papers.


Sign in / Sign up

Export Citation Format

Share Document