scholarly journals Correction to: Performance Study of LabVIEW Modelled PV Panel and Its Hardware Implementation

Author(s):  
Salim ◽  
Jyoti Ohri
2018 ◽  
Vol 7 (2.17) ◽  
pp. 70
Author(s):  
Jaiganesh K ◽  
Karuppiah N ◽  
Ravivarman S ◽  
Md Asif

The maximum electrical energy conversion efficiency of the Solar PV panel is up to 22% in normal conventional roof- top system under the temperature of 25˚C on Standard Test Condition (STC). In Indian climatic conditions, the atmospheric temperature is mostly above 35˚C to 45˚C, it incites 35˚C to 80˚C temperature on the PV panel. The black body of the PV panel absorbs more heat. This temperature affects the electrical efficiency of the panel significantly. This paper proposes the mathematical modelling of the solar PV panel for different solar irradiation and the temperature. The experimental evaluation is conducted in the latitude of 11.36 (N) and longitude 77.82 (E). The testing and monitoring was done with LabVIEW based National Instruments hardware such as NI cDAQ-9178, NI DAQ - 9227 and NI DAQ 9225. The comparative study between the simulated result and real time hardware results are discussed in this paper. The test result shows that the output of the proposed model mismatches with the experimental output of the solar PV panel due to the negative correlation between the efficiency and temperature for variable irradiation condition. It shows a power difference of 9.41W between the output of the proposed model and the experimental setup.  


2020 ◽  
Vol 4 (3) ◽  
pp. 34
Author(s):  
Dina A. John ◽  
Saket Sehgal ◽  
Karabi Biswas

In this paper, the performance of an analog PI λ D μ controller is done for speed regulation of a DC motor. The circuits for the fractional integrator and differentiator of PI λ D μ controller are designed by optimal pole-zero interlacing algorithm. The performance of the controller is compared with another PI λ D μ controller—in which the fractional integrator circuit employs a solid-state fractional capacitor. It can be verified from the results that using PI λ D μ controllers, the speed response of the DC motor has improved with reduction in settling time ( T s ), steady state error (SS error) and % overshoot (% M p ).


2017 ◽  
Vol 61 (3) ◽  
pp. 234 ◽  
Author(s):  
Mahadi Hasan Masud ◽  
Md. Shamim Akhter ◽  
Sadequl Islam ◽  
Abdul Mojid Parvej ◽  
Sazzad Mahmud

Solar energy is one of the important sources of renewable energy which can be a feasible alternative to fossil fuels. There are many works has been done in order to incorporate solar energy to everyday transportation including tricycle. However, most of the tricycle develops are expensive and not feasible for developing countries. In this study, a cheaper solar tricycle with more capability of utilizing the solar energy is designed for developing countries. The main content of the tricycle is Solar PV panel, Brushless PMDC motor, controller, and battery. The power transmission of the solar tricycle is also simple. It is found that tricycle serves 24% back up for running, by the solar panel. Also, the total construction cost of the tricycle is only 240$ with near about zero impact on the environment. This paper highlights the advantages of the dual mode of charging, including the economic and environmental feasibility of the tricycle.


2014 ◽  
Vol 45 (3) ◽  
pp. 239-245 ◽  
Author(s):  
Robert J. Calin-Jageman ◽  
Tracy L. Caldwell

A recent series of experiments suggests that fostering superstitions can substantially improve performance on a variety of motor and cognitive tasks ( Damisch, Stoberock, & Mussweiler, 2010 ). We conducted two high-powered and precise replications of one of these experiments, examining if telling participants they had a lucky golf ball could improve their performance on a 10-shot golf task relative to controls. We found that the effect of superstition on performance is elusive: Participants told they had a lucky ball performed almost identically to controls. Our failure to replicate the target study was not due to lack of impact, lack of statistical power, differences in task difficulty, nor differences in participant belief in luck. A meta-analysis indicates significant heterogeneity in the effect of superstition on performance. This could be due to an unknown moderator, but no effect was observed among the studies with the strongest research designs (e.g., high power, a priori sampling plan).


Author(s):  
Deepak D. ◽  
Nitesh Kumar ◽  
Shreyas P. Shetty ◽  
Saurabh Jain ◽  
Manoj Bhat

The expensive nature of currently used materials in the soft robotic industry demands the consideration of alternative materials for fabrication. This work investigates the performance of RTV-2 grade silicone rubber for fabrication of a soft actuator. Initially, a cylindrical actuator is fabricated using this material and its performance is experimentally assessed for different pressures. Further, parametric variations of the effect of wall thickness and inflation pressure are studied by numerical methods. Results show that, both wall thickness and inflation pressure are influential parameters which affect the elongation behaviour of the actuator. Thin (1.5 mm) sectioned actuators produced 76.97% more elongation compared to thick sectioned, but the stress induced is 89.61 % higher. Whereas, the thick sectioned actuator (6 mm) showed a higher load transmitting capability. With change in wall thickness from 1.5 mm to 6 mm, the elongation is reduced by 76.97 %, 38.35 %, 21.05 % and 11.43 % at pressure 100 kPa, 75 kPa, 50 kPa and 25 kPa respectively. The induced stress is also found reduced by 89.61 %, 86.66 %, 84.46 % and 68.68 % at these pressures. The average load carrying capacity of the actuator is found to be directly proportional to its wall thickness and inflation pressure.


Sign in / Sign up

Export Citation Format

Share Document