scholarly journals Design, Construction and Performance Study of a Solar Assisted Tri-cycle

2017 ◽  
Vol 61 (3) ◽  
pp. 234 ◽  
Author(s):  
Mahadi Hasan Masud ◽  
Md. Shamim Akhter ◽  
Sadequl Islam ◽  
Abdul Mojid Parvej ◽  
Sazzad Mahmud

Solar energy is one of the important sources of renewable energy which can be a feasible alternative to fossil fuels. There are many works has been done in order to incorporate solar energy to everyday transportation including tricycle. However, most of the tricycle develops are expensive and not feasible for developing countries. In this study, a cheaper solar tricycle with more capability of utilizing the solar energy is designed for developing countries. The main content of the tricycle is Solar PV panel, Brushless PMDC motor, controller, and battery. The power transmission of the solar tricycle is also simple. It is found that tricycle serves 24% back up for running, by the solar panel. Also, the total construction cost of the tricycle is only 240$ with near about zero impact on the environment. This paper highlights the advantages of the dual mode of charging, including the economic and environmental feasibility of the tricycle.

2018 ◽  
Vol 7 (2.17) ◽  
pp. 70
Author(s):  
Jaiganesh K ◽  
Karuppiah N ◽  
Ravivarman S ◽  
Md Asif

The maximum electrical energy conversion efficiency of the Solar PV panel is up to 22% in normal conventional roof- top system under the temperature of 25˚C on Standard Test Condition (STC). In Indian climatic conditions, the atmospheric temperature is mostly above 35˚C to 45˚C, it incites 35˚C to 80˚C temperature on the PV panel. The black body of the PV panel absorbs more heat. This temperature affects the electrical efficiency of the panel significantly. This paper proposes the mathematical modelling of the solar PV panel for different solar irradiation and the temperature. The experimental evaluation is conducted in the latitude of 11.36 (N) and longitude 77.82 (E). The testing and monitoring was done with LabVIEW based National Instruments hardware such as NI cDAQ-9178, NI DAQ - 9227 and NI DAQ 9225. The comparative study between the simulated result and real time hardware results are discussed in this paper. The test result shows that the output of the proposed model mismatches with the experimental output of the solar PV panel due to the negative correlation between the efficiency and temperature for variable irradiation condition. It shows a power difference of 9.41W between the output of the proposed model and the experimental setup.  


2021 ◽  
Author(s):  
Kais Siala ◽  
A.F.M. Kamal Chowdhury ◽  
Thanh Dang ◽  
Stefano Galelli

Abstract Strategic dam planning and the deployment of decentralized renewable technologies are two elements of the same problem, yet they are normally addressed in isolation. Here, we show that an integrated view of the power system capacity expansion problem could have transformative effects for the 'Battery of Asia' plan. We demonstrate that Thailand, Laos, and Cambodia have tangible opportunities for meeting projected electricity demand and CO2 emission targets with less hydropower than currently planned--options range from halting the construction of all dams in the Lower Mekong to building 82% of the planned ones. The key enabling strategies for these options to succeed are solar PV and regional coordination, expressed in the form of centralized planning and cross-border power trading. The alternative expansion plans would slightly increase the cumulative costs, but limit the fragmentation of additional river reaches, thereby offering more sustainable pathways for the Mekong’s ecosystems and riparian people.


2021 ◽  
Author(s):  
Annie Chow

Alternative sources of energy are being sought after in the world today, as the availability of fossil fuels and other non-renewable resources are declining. Solar energy offers a promising solution to this search as it is a less polluting renewable energy resource and can be easily converted into electricity through the usage of photovoltaic systems. This thesis focuses on the modeling of urban solar energy with high spatiotemporal resolution. A methodology was developed to estimate hourly solar PV electricity generation potential on rooftops in an urban environment using a 3-D model. A case study area of Ryerson University, Toronto was chosen and the incident solar radiation upon each building rooftop was calculated using a software tool called Ecotect Analysis 2011. Secondly, orthophotos of the case study area were digitized using Geographic Information Systems in order to eliminate undesirable rooftop objects within the model. Lastly, a software tool called HOMER was used to generate hourly solar PV electricity estimates using the values generated by the other two software tools as input parameters. It was found that hourly solar PV output followed the pattern of a binomial curve and that peak solar generation times coincided with summer peak electricity consumption hours in Ontario.


Author(s):  
Asmaa Khalfan Saif Al-Falahi

Solar energy is power uses in various techniques to concentrate the energy of the sun and converted into electricity and then supplies it for thousands of people. Furthermore, solar energy efficiency and performance still law it around 15% -21.5% ranging for solar crystalline silicon. Besides that, Oman has a good graphical location for applied solar energy technologies and an increase in efficiency and performance of using solar energy technologies can make economic future development which can help to reduce the dependence on fossil fuels and create a sustainable environment that can make a change in Omani economic diversification. Acutely, the main objective of this research is to study the performance of solar energy in building and enhance solar energy efficiently in Oman. The research methods that used are qualitative and quantitative which are questionnaire and interview that analyzed by using SPSS program and narrative analysis. Moreover, the result analysis of this research display that the performance of solar energy can be improving by Make solar technology clean, install solar energy technology correctly, Provide solar concentrator and avoid the shaded area. Additionally, the efficiency of solar energy can be increased by using many technologies as solar cell glazing, cooling technique Concentrators, and Solar tracking.


Author(s):  
Ramzi Alahmadi ◽  
◽  
Kamel Almutairi ◽  

With the increasing global concerns about greenhouse gas emissions caused by the extensive use of fossil fuels, many countries are investing in the deployment of clean energy sources. The utilization of abundant solar energy is one of the fastest growing deployed renewable sources due its technological maturity and economic competitivity. In addition to report from the National Renewable Energy Laboratory (NREL), many studies have suggested that the maturity of solar energy systems will continue to develop, which will increase their economic viability. The focus of analysis in this paper is countries with hot desert climates since they are the best candidates for solar energy systems. The capital of Saudi Arabia, Riyadh is used as the case study due to the country’s ambitious goals in this field. The main purpose of this study is to comprehensively analyze the stochastic behavior and probabilistic distribution of solar irradiance in order to accurately estimate the expected power output of solar systems. A solar Photovoltaic (PV) module is used for the analysis due to its practicality and widespread use in utility-scale projects. In addition to the use of a break-even analysis to estimate the economic viability of solar PV systems in hot desert climates, this paper estimates the indifference point at which the economic feasibility of solar PV systems is justified, compared with the fossil-based systems. The numerical results show that the break-even point of installing one KW generation capacity of a solar PV system is estimated to pay off after producing 16,827 KWh, compared to 15,422 KWh for the case of fossil-based systems. However, the increased cost of initial investment in solar PV systems deployment starts to be economically justified after producing 41,437 KWh.


2021 ◽  
Vol 10 (3) ◽  
pp. 125-139
Author(s):  
Mochammad Donny Anggoro ◽  
Diana Siregar ◽  
Regina Ninggar ◽  
Satriyo Wicaksono ◽  
Soo Hee Lee

The solar PV systems are semiconductor devices that precisely convert sunlight into electricity, through the transfer of electrons. They provide several advantages, such as high modularity, zero noise, and adequate availability of solar resources in Indonesia. Therefore, this study aims to determine the potency, policy perspective, and Cost-Benefit Analysis (CBA) of the solar energy implementation for electricity generation. A statistical analysis was used for measuring potency, as well as reviewing opportunistic policies and barriers. A review of some CBA-based journals was also carried out, to determine that the development of solar power electricity had more benefit than fossil fuels and LCOE (Levelized Cost Of Electricity). The results of the 10-days average value calculation in 2019 were 388-563 W/m2, with the maximum values at 1137-1604 W/m2. Meanwhile the analysis of the maximum hourly averages for Western, Central, and Eastern Indonesia were 570-719, 634-758, and 559-627 W/m2 at 11.00-12.00 WIB, 11.00-13.00 WITA, and 12.00-13.00 WIT, respectively. The potency of solar radiation intensity in Indonesia was averagely 150-750 W/m2, as the highest values were found in East Nusa Tenggara, Maluku, and Merauke.


1969 ◽  
Vol 69 (1) ◽  
pp. 45-55
Author(s):  
Y. Shahabasi

Strictly speaking, all forms of energy are derived from the sun. However, our most common forms of energy, fossil-fuels, received their solar input eons ago and have changed their characteristics so that they are now in concentrated form. It is apparent that these stored concentrated energy forms are now being used at such a rapid rate that they will be depleted in the not-toodistant future. It would be useful to utilize the incoming solar energy directly. The effective use of the sun's energy in agriculture by any economically possible means will help the farmers continue their work with no disruption because of the lack of concentrated form of energy. The fluidyne heat engine utilizes solar energy to pump water. The simplicity, reliability, and low cost of this engine are of primary importance for the farmers in the part of the world whereas solar energy is abundant such as Puerto Rico.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kais Siala ◽  
Afm Kamal Chowdhury ◽  
Thanh Duc Dang ◽  
Stefano Galelli

AbstractStrategic dam planning and the deployment of decentralized renewable technologies are two elements of the same problem, yet normally addressed in isolation. Here, we show that an integrated view of the power system capacity expansion problem could have transformative effects for Southeast Asia’s hydropower plans. We demonstrate that Thailand, Laos, and Cambodia have tangible opportunities for meeting projected electricity demand and CO2 emission targets with less hydropower than currently planned—options range from halting the construction of all dams in the Lower Mekong to building 82% of the planned ones. The key enabling strategies for these options to succeed are solar PV and regional coordination, expressed in the form of centralized planning and cross-border power trading. The alternative expansion plans would slightly increase the cumulative costs (up to 2.4%), but substantially limit the fragmentation of additional river reaches, thereby offering more sustainable pathways for the Mekong’s ecosystems and riparian people.


2021 ◽  
Author(s):  
Annie Chow

Alternative sources of energy are being sought after in the world today, as the availability of fossil fuels and other non-renewable resources are declining. Solar energy offers a promising solution to this search as it is a less polluting renewable energy resource and can be easily converted into electricity through the usage of photovoltaic systems. This thesis focuses on the modeling of urban solar energy with high spatiotemporal resolution. A methodology was developed to estimate hourly solar PV electricity generation potential on rooftops in an urban environment using a 3-D model. A case study area of Ryerson University, Toronto was chosen and the incident solar radiation upon each building rooftop was calculated using a software tool called Ecotect Analysis 2011. Secondly, orthophotos of the case study area were digitized using Geographic Information Systems in order to eliminate undesirable rooftop objects within the model. Lastly, a software tool called HOMER was used to generate hourly solar PV electricity estimates using the values generated by the other two software tools as input parameters. It was found that hourly solar PV output followed the pattern of a binomial curve and that peak solar generation times coincided with summer peak electricity consumption hours in Ontario.


Sign in / Sign up

Export Citation Format

Share Document