Biaxial Strain Control Fatigue Testing Strategies for Composite Materials

Author(s):  
A. Moncy ◽  
J. P. Waldbjørn ◽  
C. Berggreen
Author(s):  
Marc Vankeerberghen ◽  
Alec Mclennan ◽  
Igor Simonovski ◽  
German Barrera ◽  
Sergio Arrieta Gomez ◽  
...  

Abstract During strain-controlled fatigue testing of solid bar specimens in a LWR environment within an autoclave, it is common practice to avoid the use of a gauge length extensometer to remove the risk of preferential corrosion and early crack nucleation from the extensometer contact points. Instead, displacement- or strain-control is applied at the specimen shoulders, where the cross-sectional area of the specimen is higher and so surface stress levels are lower. A correction factor is applied to the control waveform at the shoulder in order to achieve approximately the target waveform within the specimen gauge length. The correction factor is generally derived from trials conducted in air by cycling samples with extensometers attached to both the shoulders and the gauge length; typically, the average ratio between the strains or the ratio at half-life in these locations is taken to be the correction factor used in testing. These calibration trials may be supplemented by Finite Element Analysis modelling of the specimens, or by other analysis of results from the calibration trials. Within the INCEFA+ collaborative fatigue research project, a total of six organizations are performing fatigue testing in LWR environments within an autoclave. Of these, one organization is performing tests in an autoclave using extensometers attached to both the specimen shoulders and the specimen gauge length. Therefore the INCEFA+ project provides a unique opportunity to compile and compare methods of shoulder control correction used by different organizations when fatigue testing in LWR environments. This paper presents the different methods of correcting shoulder control waveforms used by partners within the INCEFA+ project, compares the correction factors used, and assesses sensitivities of the correction factor to parameters such as specimen diameter. In addition, correction factors for air and PWR environments are compared. Conclusions are drawn and recommendations made for future fatigue testing in LWR environments within autoclaves.


2014 ◽  
Vol 87 (1) ◽  
pp. 120-138 ◽  
Author(s):  
Francesco Q. Pancheri ◽  
Luis Dorfmann

ABSTRACT We present a new experimental method and provide data showing the response of 40A natural rubber in uniaxial, pure shear, and biaxial tension. Real-time biaxial strain control allows for independent and automatic variation of the velocity of extension and retraction of each actuator to maintain the preselected deformation rate within the gage area of the specimen. We also focus on the Valanis–Landel hypothesis that is used to verify and validate the consistency of the data. We use a three-term Ogden model to derive stress–stretch relations to validate the experimental data. The material model parameters are determined using the primary loading path in uniaxial and equibiaxial tension. Excellent agreement is found when the model is used to predict the response in biaxial tension for different maximum in-plane stretches. The application of the Valanis–Landel hypothesis also results in excellent agreement with the theoretical prediction.


2021 ◽  
Author(s):  
Marc Vankeerberghen ◽  
Alec Mclennan ◽  
Igor Simonovski ◽  
Sergio Arrieta Gomez ◽  
German Barrera ◽  
...  

Author(s):  
Kevan W. F. Gahan ◽  
John P. Parmigiani

Abstract Improved material models for engineered polymer and composite materials including both monotonic and fatigue characteristics are necessary for creating more accurate digital simulations for heavy duty trucks. Unlike steel and other alloys that are commonly included in truck designs, these advanced polymer materials do not have pre-existing fatigue characteristic data. Additionally, there are no individual standard test procedures that can be commonly cited and followed during a research program. These materials are found in hoods, dashboards, body panels and splash shields of trucks, and are subject to cyclic loading conditions at various amplitudes and durations throughout the entire use or “duty cycle” of the vehicle. The applied loads vary between truck models, as some trucks will be used for vocational purposes and others will remain on the highway. This paper describes the testing of isotropic non-reinforced, and anisotropic glass-fiber-reinforced polymers and the subsequent calculation of the monotonic and fatigue properties that are needed to describe their behavior under various loading conditions. Material characteristics are measured using a series of constant amplitude strain-controlled fatigue tests that follow standard practices from ASTM D638 (Standard Test Method for Tensile Properties of Plastics), ASTM E606 (Standard Practice for Strain-Controlled Fatigue Testing) methods, and SAE J1099 (Technical Report on Low Cycle Fatigue Properties of Ferrous and Non-Ferrous Materials). The ASTM D638 Type 1 coupon geometry is used for all materials, with a varied sample thickness and length. An axial extensometer is incorporated to measure strain data through the duration of all tests, and an anti-buckling fixture is installed during cyclic tests to eliminate any bending in the specimen during the compressive portion of the fully-reversed waveform. A transverse extensometer is also installed on the gauge length of the material coupons to measure instantaneous cross-sectional area as well as Poisson’s ratio during monotonic testing. The data collected through the monotonic testing procedure is used to calculate Young’s Modulus, Poisson’s ratio, ultimate tensile strength, elongation (% strain), yield strength and strain, and true fracture strength and strain. The fatigue testing procedure yields data that can be used to calculate the fatigue strength coefficient (σf′), fatigue strength exponent (b), fatigue ductility coefficient (εf′), and fatigue ductility exponent (c). These parameters provide accurate stress-strain, cyclic stress-strain, and strain-life curves for the materials in question. A method will also be suggested for calculating the stress-life fatigue parameters, stress range intercept and slope, from the strain-controlled data. Furthermore, mold-flow analysis is applied to predict general orientation of the reinforcement fibers induced by the direction of material flow as a part is injection-molded. The calculated monotonic and fatigue parameters in conjunction with mold-flow analysis can immediately be applied within digital s imulations, allowing improved accuracy in life-expectancy estimations for truck parts.


Machines ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 27 ◽  
Author(s):  
Pereira ◽  
Fernandes ◽  
de Morais ◽  
Carvalhoso

Experimental studies on fatigue behavior are usually conducted on servo-hydraulic testing machines that are expensive and have high maintenance costs. In this work, a much simpler testing machine was developed, intended mainly for delamination fatigue tests on composite materials. After a literature review on the methods and parameters of such tests, the machine was designed, and its parts manufactured and assembled into a fully operational testing machine. Additionally, the electrical components and the control and data acquisition software were also developed and implemented. Finally, several mode II delamination fatigue tests were conducted using the end-notched flexure test. The results were consistent with the well-known Paris law, which for composite materials relates the crack propagation rate to the strain-energy release rate range. Therefore, the developed machine seems to be an excellent alternative to the highly costly testing machines.


2006 ◽  
Vol 326-328 ◽  
pp. 1031-1034 ◽  
Author(s):  
Shun Fa Hwang ◽  
Yi Der Su

Composite materials using polymer resins as matrices have viscoelastic behavior. This behavior has effects on the fatigue properties of composite materials. Therefore, one can accelerate the fatigue testing if the loading frequency or temperature is changed. The purpose of this work is to investigate the accelerated fatigue properties of glass/fiber composites. In order to establish the accelerated fatigue properties of glass/epoxy composites, the fatigue testing of unidirectional specimens with different angles is conducted at room temperature under different stresses, stress frequencies, and stress ratios. The results indicate that the fatigue life increases with the increasing of stress frequency or stress ratio for the three types of unidirectional specimens. The reasons for these increasing effects are also discussed.


Sign in / Sign up

Export Citation Format

Share Document