Strain Control Correction for Fatigue Testing in LWR Environments

Author(s):  
Marc Vankeerberghen ◽  
Alec Mclennan ◽  
Igor Simonovski ◽  
German Barrera ◽  
Sergio Arrieta Gomez ◽  
...  

Abstract During strain-controlled fatigue testing of solid bar specimens in a LWR environment within an autoclave, it is common practice to avoid the use of a gauge length extensometer to remove the risk of preferential corrosion and early crack nucleation from the extensometer contact points. Instead, displacement- or strain-control is applied at the specimen shoulders, where the cross-sectional area of the specimen is higher and so surface stress levels are lower. A correction factor is applied to the control waveform at the shoulder in order to achieve approximately the target waveform within the specimen gauge length. The correction factor is generally derived from trials conducted in air by cycling samples with extensometers attached to both the shoulders and the gauge length; typically, the average ratio between the strains or the ratio at half-life in these locations is taken to be the correction factor used in testing. These calibration trials may be supplemented by Finite Element Analysis modelling of the specimens, or by other analysis of results from the calibration trials. Within the INCEFA+ collaborative fatigue research project, a total of six organizations are performing fatigue testing in LWR environments within an autoclave. Of these, one organization is performing tests in an autoclave using extensometers attached to both the specimen shoulders and the specimen gauge length. Therefore the INCEFA+ project provides a unique opportunity to compile and compare methods of shoulder control correction used by different organizations when fatigue testing in LWR environments. This paper presents the different methods of correcting shoulder control waveforms used by partners within the INCEFA+ project, compares the correction factors used, and assesses sensitivities of the correction factor to parameters such as specimen diameter. In addition, correction factors for air and PWR environments are compared. Conclusions are drawn and recommendations made for future fatigue testing in LWR environments within autoclaves.

1996 ◽  
Vol 118 (2) ◽  
pp. 203-207
Author(s):  
T. P. O’Donnell

Stress intensity values for cracks growing in conventional fatigue specimens are determined, with emphasis on the end constraint conditions associated with S-N fatigue testing. Three-dimensional finite element analysis methods are used to analyze thumbnail-shaped cracks in cylindrical geometries. Crack front straightening due to the increased bending introduced as crack growth progresses is included in the models. Because relatively stiff fatigue test machines prevent rotation at the clamped ends of test specimens, uniform axial displacement boundary conditions are imposed. Results for uniformly applied axial stress end conditions are also obtained for comparison. For crack-depth-to-specimen-diameter ratios over one-third, bending restraint induced in the specimens under applied axial displacement significantly reduces the resulting stress intensity relative to values computed for uniform end tension. The results are useful for evaluating crack growth in fatigue specimens within the limits of linear elastic fracture mechanics.


2020 ◽  
Vol 54 (23) ◽  
pp. 3275-3286 ◽  
Author(s):  
Zia Javanbakht ◽  
Wayne Hall ◽  
Amandeep Singh Virk ◽  
John Summerscales ◽  
Andreas Öchsner

The aim of the current work was to illustrate the effect of the fibre area correction factor on the results of modelling natural fibre-reinforced composites. A mesoscopic approach is adopted to represent the stochastic heterogeneity of the composite, i.e. a meso-structural numerical model was prototyped using the finite element method including quasi-unidirectional discrete fibre elements embedded in a matrix. The model was verified by the experimental results from previous work on jute fibres but is extendable to every natural fibre with cross-sectional non-uniformity. A correction factor was suggested to fine-tune both the analytical and numerical models. Moreover, a model updating technique for considering the size-effect of fibres is introduced and its implementation was automated by means of FORTRAN subroutines and Python scripts. It was shown that correcting and updating the fibre strength is critical to obtain accurate macroscopic response of the composite when discrete modelling of fibres is intended. Based on the current study, it is found that consideration of the effect of flaws on the strength of natural fibres and inclusion of the fibre area correction factor are crucial to obtain realistic results.


2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


2018 ◽  
Vol 84 (12) ◽  
pp. 68-72
Author(s):  
A. B. Maksimov ◽  
I. P. Shevchenko ◽  
I. S. Erokhina

A method for separating the work of impact into two parts - the work of the crack nucleation and that of crack growth - which consists in testing two samples with the same stress concentrators and different cross-sectional dimensions at the notch site is developed. It is assumed that the work of crack nucleation is proportional to the width of the sample face on which the crack originates and the specific energy of crack formation, whereas the work of the crack growth is proportional to the length of crack development and the specific crack growth energy. In case of the sample fracture upon testing, the crack growth length is assumed equal to the sample width. Data on the work of fracture of two samples and their geometrical dimensions at the site of the notch are used to form a system of two linear equations in two unknowns, i.e., the specific energy of crack formation and specific energy of crack growth. The determined specific energy values are then used to calculate the work of crack nucleation and work of crack growth. The use of the analytical method improves the accuracy compared to graphical - extrapolative procedures. The novelty of the method consists in using one and the same form of the notch in test samples, thus providing the same conditions of the stress-strain state for crack nucleation and growth. Moreover, specimens with different cross-section dimensions are used to eliminate the scale effects. Since the specific energy of the crack nu-cleation and specific energy of the crack growth are independent of the scale factor, they are determined only by the properties of the metal. Introduction the specific energy of crack formation and growth makes possible to assign a specific physical meaning to the fracture energy.


2020 ◽  
pp. 136943322098170
Author(s):  
Michele Fabio Granata ◽  
Antonino Recupero

In concrete box girders, the amount and distribution of reinforcements in the webs have to be estimated considering the local effects due to eccentric external loads and cross-sectional distortion and not only the global effect due to the resultant forces of a longitudinal analysis: shear, torsion and bending. This work presents an analytical model that allows designers to take into account the interaction of all these effects, global and local, for the determination of the reinforcements. The model is based on the theory of stress fields and it has been compared to a 3D finite element analysis, in order to validate the interaction domains. The results show how the proposed analytical model allows an easy and reliable reinforcement evaluation, in agreement with a more refined 3D analysis but with a reduced computational burden.


Author(s):  
Hailing Yu

In ballasted concrete tie track, the tie-ballast interface can deteriorate resulting in concrete tie bottom abrasion, ballast pulverization and/or voids in tie-ballast interfaces. Tie-ballast voids toward tie ends can lead to unfavorable center binding support conditions that can result in premature concrete tie failure and possible train derailment. Direct detection of these conditions is difficult. There is a strong interest in assessing the concrete tie-ballast interface conditions indirectly using measured vertical deflections. This paper seeks to establish a link between the vertical deflection profile of a concrete tie top surface and the tie-ballast interface condition using the finite element analysis (FEA) method. The concrete tie is modeled as a concrete matrix embedded with prestressing steel strands or wires. The configurations of two commonly used concrete ties, one with 8 prestressing strands and the other with 20 prestressing wires, are employed in this study. All models are three-dimensional and symmetric about the tie center. A damaged plasticity model that can predict onset and propagation of tensile cracks is applied to the concrete material. The steel-concrete interface is homogenized and represented with a thin layer of cohesive elements sandwiched between steel and concrete elements. Strand- or wire-specific elasto-plastic bond models developed at the Volpe Center are applied to the cohesive elements to account for the interface bonding mechanisms. FE models are developed for both original and worn concrete ties, with the latter assuming hypothetical patterns of reduced cross sections resulting from abrasive interactions with the ballast. Static analyses of pretension release in these concrete ties are conducted, and vertical deflection gradients along tie lengths are calculated and shown to correspond well with the worn cross sectional patterns for a given reinforcement type. The ballast is further modeled with Extended Drucker-Prager plasticity, and hypothetical voids are applied toward the tie ends along the concrete tie-ballast interface to simulate center binding support conditions. The distance range over which the concrete tie is supported in the center is variable and yields different center binding severity. Static simulations are completed with vertical rail seat loads applied on the concrete tie-ballast assembly. The influences of various factors on the vertical deflection profile, including tie type, vertical load magnitude, center binding severity, cross sectional material loss and prestress loss, are examined based on the FEA results. The work presented in this paper demonstrates the potential of using the vertical deflection profile of concrete tie top surfaces to assess deteriorations in the tie-ballast interface. The simulation results further help to clarify minimum technical requirements on inspection technologies that measure concrete tie vertical deflection profiles.


2017 ◽  
Vol 905 ◽  
pp. 123-130
Author(s):  
Adrian Brügger ◽  
Seung Yub Lee ◽  
İsmail Cevdet Noyan ◽  
Raimondo Betti

Suspension-bridge cables are constructed from strands of galvanized steel wire. They are failure-critical structural members, so a fundamental understanding of their mechanics is imminently important in quantifying suspension bridge safety. The load-carrying capabilities of such strands after local wire failures have been the subject of many theoretical studies utilizing analytical equations and finite-element analysis. Little experimental data, however, exists to validate these models.Over the past five years we have developed a methodology for measuring stress/strain transfer within parallel wire strands of suspension bridge cables using neutron diffraction [1,2]. In this paper we describe the design and verification of parallel cable strands used in our studies. We describe the neutron diffraction strain measurements performed on standard 7-wire and expanded 19-wire models in various configurations at both the Los Alamos National Laboratory Spectrometer for Materials Research at Temperature and Stress (LANL SMARTS) and at the Oak Ridge National Laboratory VULCAN Engineering Materials Diffractometer (ORNL VULCAN). Particular attention is placed on the challenges of aligning and measuring multibody systems with high strain gradients at body-to-body contact points.


2021 ◽  
Author(s):  
Richárd Horváth ◽  
Vendel Barth ◽  
Viktor Gonda ◽  
Mihály Réger ◽  
Imre Felde

Abstract In this paper, we study the energy absorption of metamaterials composed of unit cells whose special geometry makes the cross-sectional area and the volume of the bodies generated from them constant (for the same enclosing box dimensions). After a parametric description of such special geometries, we analyzed by finite element analysis the deformation of the metamaterials we have designed during compression. We 3D printed the designed metamaterials from plastic to subject them to real compression. The results of the finite element analysis were compared with the real compaction results. Then, for each test specimen, we plotted its compaction curve. By fitting a polynomial to the compaction curves and integrating it (area under the curve), the energy absorption of the samples can be obtained. As a result of these investigations, we drew a conclusion about the relationship between energy absorption and cell number.


Sign in / Sign up

Export Citation Format

Share Document