Enhanced soil washing process for the remediation of PBDEs/Pb/Cd-contaminated electronic waste site with carboxymethyl chitosan in a sunflower oil–water solvent system and microbial augmentation

2014 ◽  
Vol 22 (4) ◽  
pp. 2687-2698 ◽  
Author(s):  
Mao Ye ◽  
Mingming Sun ◽  
Jinzhong Wan ◽  
Guodong Fang ◽  
Huixin Li ◽  
...  
Pedosphere ◽  
2017 ◽  
Vol 27 (3) ◽  
pp. 452-464 ◽  
Author(s):  
Mao YE ◽  
Mingming SUN ◽  
Shanni XIE ◽  
Kuan LIU ◽  
Yanfang FENG ◽  
...  

1998 ◽  
Vol 38 (7) ◽  
pp. 63-72 ◽  
Author(s):  
K. M. Miller ◽  
M. T. Suidan ◽  
G. A. Sorial ◽  
A. P. Khodadoust ◽  
C. M. Acheson ◽  
...  

An integrated system has been developed to remediate soils contaminated with pentachlorophenol (PCP) and polycyclic aromatic hydrocarbons (PAHs). This system involves the coupling of two treatment technologies, soil solvent washing and anaerobic biotreatment of the extract. Specifically, this study evaluated the effectiveness of the granular activated carbon (GAC) fluidized-bed reactor to treat a synthetic waste stream of PCP and four PAHs (naphthalene, acenaphthene, pyrene, and benzo(b)fluoranthene) under anaerobic conditions. This waste stream was intended to simulate the wash fluids from a soil washing process treating soils from a wood preserving site. The reactor achieved a removal efficiency of greater than 99.8% for PCP with conversion to its dechlorination intermediates ranging from 47% to 77%. Effluent, carbon extraction, and isotherm data also indicate that naphthalene and acenaphthene were removed from the liquid phase with efficiencies of 86% and 93%, respectively. Effluent levels of pyrene and benzo(b)fluoranthene were extremely low due to the adsorptive capacity of GAC for these compounds. Experimental evidence does not suggest that these compounds were chemically transformed within the reactor.


2012 ◽  
Vol 116 ◽  
pp. 190-194 ◽  
Author(s):  
Yu Yang ◽  
Changwei Hu ◽  
Mahdi M. Abu-Omar
Keyword(s):  

2016 ◽  
Vol 860 ◽  
pp. 81-84
Author(s):  
Bandu Madhukar Kale ◽  
Jakub Wiener ◽  
Jiri Militky ◽  
Hafiz Shahzad Maqsood

Cellulose solution was used for coating and it was prepared by dissolving pulp cellulose in Urea-Thiourea-NaOH-Water solvent system. Reactive Red 240 dye was used for dyeing the coated as well as control cotton fabric. The effect of cellulose coating on the dyeing properties of cotton fabric was studied by measuring K/S values of the coated substrate at various concentrations of cellulose and dye. K/S value decreased after coating cellulose on the surface of cotton fabric. The lightness of cotton fabric increased after cellulose coating. SEM micrographs revealed that coated cellulose was attached to cotton fibers. Tensile strength increased after cellulose coating.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 517 ◽  
Author(s):  
Huiping Ji ◽  
Jie Fu ◽  
Tianfu Wang

Conversion of biorenewable feedstocks into transportation fuels or chemicals likely necessitates the development of novel heterogeneous catalysts with good hydrothermal stability, due to the nature of highly oxygenated biomass compounds and the prevalence of water as a processing solvent. The use of carbon-based materials, derived from sugars as catalyst precursors, can achieve hydrothermal stability while simultaneously realizing the goal of sustainability. In this work, the simultaneous pyrolysis of glucose and taurine in the presence of multi-walled carbon nanotubes (MWCNTs), to obtain versatile solid acids, has been demonstrated. Structural and textural properties of the catalysts have been characterized by TEM, TGA, and XPS. Additionally, solid state nuclear magnetic resonance (ssNMR) spectroscopy has been exploited to elucidate the chemical nature of carbon species deposited on the surface of MWCNTs. Al(OTf)3, a model Lewis acidic metal salt, has been successfully supported on sulfonic groups tethered to MWCNTs. This catalyst has been tested for C6 sugar dehydration for the production of HMF in a tetrahydrofuran (THF)/water solvent system with good recyclability.


2017 ◽  
Vol 20 (3) ◽  
pp. 843-852 ◽  
Author(s):  
Dionisio da Silva Biron ◽  
Mara Zeni ◽  
Carlos Pérez Bergmann ◽  
Venina dos Santos

Sign in / Sign up

Export Citation Format

Share Document