An evaluation of stabilised/solidified contaminated model soil using PC-based and MgO-based binders under semi-dynamic leaching conditions

2018 ◽  
Vol 25 (16) ◽  
pp. 16050-16060 ◽  
Author(s):  
Fei Wang ◽  
Zhengtao Shen ◽  
Abir Al-Tabbaa
Keyword(s):  
2019 ◽  
Vol 11 (4) ◽  
pp. 992-1000
Author(s):  
Jirawat Supakosol ◽  
Kowit Boonrawd

Abstract The purpose of this study is to investigate the future runoff into the Nong Han Lake under the effects of climate change. The hydrological model Soil and Water Assessment Tool (SWAT) has been selected for this study. The calibration and validation were performed by comparing the simulated and observed runoff from gauging station KH90 for the period 2001–2003 and 2004–2005, respectively. Future climate projections were generated by Providing Regional Climates for Impacts Studies (PRECIS) under the A2 and B2 scenarios. The SWAT model yielded good results in comparison to the baseline; moreover, the results of the PRECIS model showed that both precipitations and temperatures increased. Consequently, the amount of runoff calculated by SWAT under the A2 and B2 scenarios was higher than that for the baseline. In addition, the amount of runoff calculated considering the A2 scenario was higher than that considering the B2 scenario, due to higher average annual precipitations in the former case. The methodology and results of this study constitute key information for stakeholders, especially for the development of effective water management systems in the lake, such as designing a rule curve to cope with any future incidents.


2013 ◽  
Vol 69 (4) ◽  
pp. 727-738 ◽  
Author(s):  
Yanling Li ◽  
Roger W. Babcock

Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 150
Author(s):  
Natalia A. Kulikova ◽  
Alexander B. Volikov ◽  
Olga I. Filippova ◽  
Vladimir A. Kholodov ◽  
Nadezhda V. Yaroslavtseva ◽  
...  

The paper is devoted to the development and performance testing of a soil conditioner based on leonardite humic substances (LHS) modified with 3-aminopropyltriethoxysilane (APTES). The modified HS were obtained by adding APTES to LHS solution at different mass ratios of LHS and APTES, followed by the investigation of siloxane structures using 31Si NMR spectroscopy. The Urbic Technosol was used as a model soil. The size and amount of water-stable soil aggregates were estimated using wet sieving and laser diffraction, respectively. Toxicity was evaluated by monitoring microbial substrate-induced respiration (SIR) and seedling bioassay. Laboratory column experiments demonstrated an increase in water-stability of the 3–5 mm soil aggregates after LHS-APTES application. Field tests showed an increase in the average weighted diameter of micro aggregates (from 59 to 73 μm) and water-stable macroaggregates (from 1.6 to 2.9 mm) due to the LHS-APTES amendment. A substantial increase in SIR from 5 to 9 mg CO2 (kg h)−1 was detected. Better survival of seedlings was observed. The obtained beneficial results indicate that APTES-modified HS can be successfully used as a soil conditioner. The formation of extended siloxane networks was suggested as the main mechanism of the observed improvement in the structure of the amended soils.


1997 ◽  
Vol 195 (1-4) ◽  
pp. 312-334 ◽  
Author(s):  
M.B. McGechan ◽  
R. Graham ◽  
A.J.A. Vinten ◽  
J.T. Douglas ◽  
P.S. Hooda

Géotechnique ◽  
2021 ◽  
pp. 1-41
Author(s):  
Mohammad Hassan Baziar ◽  
Alireza Ghadamgahi ◽  
Andrew John Brennan

Seismic design of soil-nailed walls requires demonstrations of tolerable ranges of wall movements, especially when a surcharge load exists near the wall. In this study, the effect of surcharge location on seismically induced wall movements was investigated using four centrifuge tests. The axial tensile forces, developed along the soil nails during the seismic loadings, were also measured during the tests. At 50g centrifugal acceleration, model tests represented a 12-m-high prototype wall reinforced with five rows of soil nails. To apply a surcharge stress of 30 kPa at the specified location relative to the wall for each model test, a rigid footing was placed on the soil surface. The model soil-nailed walls were subjected to three successive earthquake motions. Surprisingly, it was found that the model wall with the footing located behind the soil-nailed region experienced the largest seismic movements, even more than when the footing was directly behind the wall. Further, the tests showed that the lower soil nails played a key role in the wall stability during earthquake shaking, acting as a pivot for the pre-collapse cases tested, whereas the upper soil nails needed to be sufficiently extended to properly contribute to the seismic stability of the wall.


2016 ◽  
Vol 19 (2) ◽  
pp. 107-117
Author(s):  
Trang Thi Thuy Nguyen ◽  
Khoi Nguyen Dao

The objective of this study was to simulate the hydrologic characteristic and water quality of 3S rivers system (Sekong, Sesan and Srepok) using SWAT model (Soil and Water Analysis Tool). Agriculture and forest are the main land use types in this basin accounting for more than 80 % of the total area. Therfore, nitrogen and phosphorus were selected to be parameters for water quality assessment. SWAT-CUP model was applied to calibrate the model for stream flow and water quality based on SUFI-2 (Sequential Uncertainty Fitting version 2) method. The model performance has been assessed by three statistical indices, including coefficient corellation (R2), Nash-Sutcliffe efficient coefficience (NSE) and percentage Bias (PBIAS). The results showed that SWAT model was well calibrated for simulating the streamflow and water quality with the values of R2 greater than 0.5 except for the Attapeu and Kontum stations, and of PBIAS less than 10 % and 35 % for streamflow and water quality, respectively. The well-calibrated SWAT model can be applied in predicting the hydrology and water quality for other application. Furthermore, it is a tool supporting the policy makers to offer a suitable decisions regarding the sustainable river basin management.


2021 ◽  
Vol 2 ◽  
Author(s):  
Nahim R. Tadeo-Jalife ◽  
Ruben Vasquez-Medrano ◽  
Ivan R. Quevedo

In this research work, the adsorption of two bipyridinium herbicides (i. e., Diquat and Paraquat) on natural soil and on model soil surfaces has been studied at different water chemistries commonly found in the environment (e.g., pH, supporting electrolyte, and presence of humic or fulvic acids). The experimental work was carried out in the laboratory, using experimental batches of clean quartz sand, silanized quartz sand and sandy soil as a model of agricultural topsoil where herbicides are commonly used and can be adsorbed. The concentrations reached at the equilibrium were analyzed by UV-Visible Spectroscopy for the supernatant fraction of the samples. The concentrations were fitted using adsorption isotherms to determine the adsorption mechanisms (i.e., chemisorption or physisorption) at the interface. In general terms, we have encountered that the nature of the soil matrix plays an important role on the study of pollutant adsorption. In experiments carried out on silica sand, the most abundant component of the natural soil matrix, no significant sorption was observed (<1.5 mg/g) for any of the herbicides. Yet, in experiments carried out on the presence of clay and natural organic matter (i.e., fulvic and humic acids), the adsorption of both herbicides is much higher, likely due to the chemical structure of the molecules that might facilitate the complexation with both herbicides. This investigation improves our understanding of the role that soil granular components play on the absorption of two commonly used herbicides and adequately predict their fate in natural aquatic environments.


Sign in / Sign up

Export Citation Format

Share Document