scholarly journals Omnipresent distribution of herbicides and their transformation products in all water body types of an agricultural landscape in the North German Lowland

Author(s):  
Uta Ulrich ◽  
Matthias Pfannerstill ◽  
Guido Ostendorp ◽  
Nicola Fohrer

AbstractThe research of the environmental fate of pesticides has demonstrated that applied compounds are altered in their molecular structure over time and are distributed within the environment. To assess the risk for contamination by transformation products (TP) of the herbicides flufenacet and metazachlor, the following four water body types were sampled in a small-scale catchment of 50 km2 in 2015/2016: tile drainage water, stream water, shallow groundwater, and drinking water of private wells. The TP were omnipresent in every type of water body, more frequently and in concentrations up to 10 times higher than their parent compounds. Especially metazachlor sulfonic acid, metazachlor oxalic acid, and flufenacet oxalic acid were detected in almost every drainage and stream sample. The transformation process leads to more mobile and more persistent molecules resulting in higher detection frequencies and concentrations, which can even occur a year or more after the application of the parent compound. The vulnerability of shallow groundwater and private drinking water wells to leaching compounds is proved by numerous positives of metazachlor-TP with maximum concentrations of 0.7 μg L−1 (drinking water) and 20 μg L−1 (shallow groundwater) of metazachlor sulfonic acid. Rainfall events during the application period cause high discharge of the parent compound and lower release of TP. Later rainfall events lead to high displacement of TP. For an integrated risk assessment of water bodies, the environmental behavior of pesticide-TP has to be included into regular state-of-the-art water quality monitoring.

2013 ◽  
Vol 13 (6) ◽  
pp. 1576-1582 ◽  
Author(s):  
L. Tootchi ◽  
R. Seth ◽  
S. Tabe ◽  
P. Yang

Ozonation and ozone-based advanced oxidation processes have been shown to be effective in the oxidation of several pharmaceutically active compounds (PhACs) routinely detected in surface waters. Under typical operating conditions of these processes, most of the parent compound oxidized is expected to lead to the formation of transformation products (TPs). For a target ozone exposure, the resulting hydroxyl radical exposure depends on the water matrix or process chosen (e.g. peroxone) which in turn may influence the degradation pathway and the TPs formed. This study was undertaken to examine the expected impact that varying ozone and hydroxyl radical exposures may have on TP formation from the oxidation of PhACs during typical drinking water ozonation. Two representative PhACs were selected for the study. Carbamazepine was chosen to represent PhACs with a fast reaction rate with ozone (kO3 > 104 M−1 s−1) and bezafibrate was chosen to represent PhACs with a slow to moderate reaction rate with ozone (kO3 < 104 M−1 s−1). The results show that under varying ozone and hydroxyl exposure scenarios examined, the major oxidation pathway for the parent compound was dominated by reaction with ozone for carbamazepine while for bezafibrate it varied.


2020 ◽  
Author(s):  
Maelle Fresne ◽  
Phil Jordan ◽  
Karen Daly ◽  
Owen Fenton ◽  
Per-Erik Mellander

<p>Soil colloids with high sorbing capacities can enhance transport of phosphorus (P) from soils to groundwater and the delivery of P to surface water via groundwater pathways. However, only particulate and dissolved P fractions are generally monitored at the catchment scale.</p><p>To add important insights into the particulate to dissolved P concentration spectrum in the soil-water environment, the role of colloidal P delivery processes to surface water was studied in two agricultural catchments. The catchments were dominated by belowground pathways but had contrasting land use (arable and grassland). Particulate, coarse colloidal (0.20 – 0.45 μm) and finer colloidal (< 0.20 μm) P fractions were monitored along hillslopes in the free soil solution, shallow groundwater and stream water on a weekly basis for background characterisation and at higher frequency during rainfall events. An automated sampler was deployed in the stream and an automated, low-flow and low-disturbance sampler was developed to sample groundwater. Multi-parameter probes were also deployed to monitor stream water and shallow groundwater physico-chemical parameters. Stream discharge was measured at high frequency using a flow velocimeter in order to quantify P loads, apportion hydrological pathways and study concentration-discharge hysteresis.</p><p>Preliminary findings showed higher background P and unreactive P concentrations in the stream and groundwater in the grassland catchment. In the arable catchment (rainfall event in June 2019) P was mainly lost through deeper baseflow (92% of the total event flow) as reactive P in the finer colloidal fraction (0.070 mg P/ha) and only a small fraction lost as particulate unreactive P (0.008 mg P/ha). In the grassland catchment (rainfall event in October 2019), P was mainly lost through quickflow (37% of the total flow) even tough deeper baseflow was also important (33%). Losses were mainly reactive P in the finer colloidal fraction (13.6 mg P/ha) but also as unreactive P (4.5 mg P/ha). Concentration-discharge hysteresis suggested a smaller and easily mobilised P source in the arable catchment and a larger P source, followed by the mobilisation of a second but smaller source via a second hydrological surface pathway in the grassland catchment.</p><p>Further monitoring campaigns during more rainfall events in the grassland catchment are required to better understand colloidal P delivery and the spatial/temporal dynamics between rainfall events in relation to soil conditions and rainfall patterns. This will help to better target mitigations measures according to P species and fractions, hydrological flowpaths, and rainfall patterns – important in the context of a changing climate.</p>


2004 ◽  
Vol 50 (5) ◽  
pp. 261-268 ◽  
Author(s):  
S. Schittko ◽  
A. Putschew ◽  
M. Jekel

After bank filtration, effluent influenced surface waters are often used as raw drinking water. It is known that high concentrations of iodinated X-ray contrast media are detectable in such surface waters and thus, more knowledge about the behaviour of the contrast media during bank filtration is necessary and the subject of investigations in this study. The adsorbable organic iodine (AOI), four widely used iodinated X-ray contrast media and four possible transformation products were quantified in an influenced lake, five groundwater wells and a drinking water well. Under anoxic conditions the AOI as well as the concentration of the contrast media are decreased by bank filtration, whereby the AOI is decreased by 64% and the contrast media concentration can be reduced up to 95%, depending on the compound. In the raw drinking water the following average concentrations were determined: Iopromid <20 ng/L, Diatrizote 166 ng/L, Iopamidol 166 ng/L and Iohexol 34 ng/L. Instationary conditions during the sampling period indicate that, at least under anoxic conditions, a large part of the contrast media and transformation products, which are still iodinated, may be associated to colloids and/or humic material.


2016 ◽  
Vol 16 (4) ◽  
pp. 922-930 ◽  
Author(s):  
L. Richard ◽  
E. Mayr ◽  
M. Zunabovic ◽  
R. Allabashi ◽  
R. Perfler

The implementation and evaluation of biological nitrification as a possible treatment option for the small-scale drinking water supply of a rural Upper Austrian community was investigated. The drinking water supply of this community (average system input volume: 20 m3/d) is based on the use of deep anaerobic groundwater with a high ammonium content of geogenic origin (up to 5 mg/l) which must be treated to prevent the formation of nitrites in the drinking water supply system. This paper describes the implementation and operation of biological nitrification despite several constraints including space availability, location and financial and manpower resources. A pilot drinking water treatment plant, including biological nitrification implemented in sand filters, was designed and constructed for a maximum treatment capacity of 1.2 m3/h. Online monitoring of selected physicochemical parameters has provided continuous treatment performance data. Treatment performance of the plant was evaluated under standard operation as well as in the case of selected malfunction events.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 40
Author(s):  
Latifah Abdul Ghani ◽  
Nora’aini Ali ◽  
Ilyanni Syazira Nazaran ◽  
Marlia M. Hanafiah

Seawater desalination is an alternative technology to provide safe drinking water and to solve water issues in an area having low water quality and limited drinking water supply. Currently, reverse osmosis (RO) is commonly used in the desalination technology and experiencing significant growth. The aim of this study was to analyze the environmental impacts of the seawater reverse osmosis (SWRO) plant installed in Kampung Pantai Senok, Kelantan, as this plant was the first installed in Malaysia. The software SimaPro 8.5 together with the ReCiPe 2016 database were used as tools to evaluate the life cycle assessment (LCA) of the SWRO plant. The results showed that the impact of global warming (3.90 kg CO2 eq/year) was the highest, followed by terrestrial ecotoxicity (1.62 kg 1,4-DCB/year) and fossil resource scarcity (1.29 kg oil eq/year). The impact of global warming was caused by the natural gas used to generate the electricity, mainly during the RO process. Reducing the environmental impact can be effectively achieved by decreasing the electricity usage for the seawater desalination process. As a suggestion, electricity generation can be overcome by using a high-flux membrane with other suitable renewable energy for the plant such as solar and wind energy.


2001 ◽  
Vol 5 (3) ◽  
pp. 367-378 ◽  
Author(s):  
C. Alewell ◽  
M. Armbruster ◽  
J. Bittersohl ◽  
C. D. Evans ◽  
H. Meesenburg ◽  
...  

Abstract. The reversal of freshwater acidification in the low mountain ranges of Germany is of public, political and scientific concern, because these regions are near natural ecosystems and function as an important drinking water supply. The aim of this study was to evaluate the status and trends of acidification reversal after two decades of reduced anthropogenic deposition in selected freshwaters of the low mountain ranges in the Harz, the Fichtelgebirge, the Bavarian Forest, the Spessart and the Black Forest. In response to decreased sulphate deposition, seven out of nine streams investigated had significantly decreasing sulphate concentrations (all trends were calculated with the Seasonal Kendall Test). The decrease in sulphate concentration was only minor, however, due to the release of previously stored soil sulphur. No increase was found in pH and acid neutralising capacity (defined by Reuss and Johnson, 1986). Aluminum concentrations in the streams did not decrease. Thus, no major acidification reversal can currently be noted in spite of two decades of decreased acid deposition. Nevertheless, the first signs of improvement in water quality were detected as there was a decrease in the level and frequency of extreme values of pH, acid neutralising capacity and aluminium concentrations in streams. With respect to nitrogen, no change was determined for either nitrate or ammonium concentrations in precipitation or stream water. Base cation fluxes indicate increasing net loss of base cations from all ecosystems investigated, which could be interpreted as an increase in soil acidification. The latter was due to a combination of continued high anion leaching and significant reduction of base cation deposition. No major improvement was noted in biological recovery, however, initial signs of recovery were detectable as there was re-occurrence of some single macroinvertebrate species which were formerly extinct. The results of this study have important implications for water authorities, forest managers and policy makers: the delay in acidification reversal suggests a need for ongoing intensive amelioration of waters, a careful selection of management tools to guarantee sustainable management of forests and the reduction of nitrogen deposition to prevent further acidification of soils and waters. Keywords: freshwater, acidification reversal, drinking water supply, forested catchments, Germany


Soil Research ◽  
2004 ◽  
Vol 42 (1) ◽  
pp. 17 ◽  
Author(s):  
K. Müller ◽  
M. Trolove ◽  
T. K. James ◽  
A. Rahman

Runoff potential of 5 herbicides (acetochlor, atrazine, hexazinone, pendimethalin, and terbuthylazine) was evaluated in a small-scale study under simulated rainfall on a cultivated Hamilton clay loam soil. At 24 h after herbicide application, rainfall events of different intensities were simulated to 0.5-m2 field plots with 20% (70, 88, and 111 mm/h) and 30% (60, 70, and 80 mm/h) slope, respectively. The objective of this study was to compare the behaviour of pesticides covering a range of properties under identical hydrodynamic conditions. Sediment amounts and herbicide concentrations were determined in the runoff samples. As the transported sediment amounts were not sufficient for chemical analyses, herbicide residues attached to sediment were estimated using Kd values determined locally for the soil. Whereas pendimethalin concentrations followed no noticeable pattern, the concentrations for the other herbicides were highest in the first runoff samples, and decreased exponentially with further rain. Results show that herbicides were primarily transported in their dissolved form with the exception of pendimethalin. Slope affected cumulative runoff, sediment, and herbicide losses significantly (P < 0.05). The impact of increased rainfall intensity on runoff initiation followed a similar trend, but herbicide losses from plots exposed to different intensities were not always significant. Losses dissolved in runoff from plots with 20% slope were ≤1% of the applied herbicide, whereas on plots with 30% slope the maximum recorded loss was 65%. Here, losses for all herbicides ranged between 1 and 7% at 60 mm/h and 8 and 65% at 80 mm/h. Exports of herbicides with moderate solubility were negatively correlated with their Kd values and their water solubility.


2004 ◽  
Vol 8 (3) ◽  
pp. 503-520 ◽  
Author(s):  
C. Neal ◽  
B. Reynolds ◽  
M. Neal ◽  
H. Wickham ◽  
L. Hill ◽  
...  

Abstract. Results for long term water quality monitoring are described for the headwaters of the principal headwater stream of the River Severn, the Afon Hafren. The results are linked to within-catchment information to describe the influence of conifer harvesting on stream and shallow groundwater quality. A 19-year record of water quality data for the Hafren (a partially spruce forested catchment with podzolic soil) shows the classic patterns of hydrochemical change in relation to concentration and flow responses for upland forested systems. Progressive felling of almost two-thirds of the forest over the period of study resulted in little impact from harvesting and replanting in relation to stream water quality. However, at the local scale, a six years’ study of felling indicated significant release of nitrate into both surface and groundwater; this persisted for two or three years before declining. The study has shown two important features. Firstly, phased felling has led to minimal impacts on stream water. This contrasts with the results of an experimental clear fell for the adjacent catchment of the Afon Hore where a distinct water quality deterioration was observed for a few years. Secondly, there are localised zones with varying hydrology that link to groundwater sources with fracture flow properties. This variability makes extrapolation to the catchment scale difficult without very extensive monitoring. The implications of these findings are discussed in relation to strong support for the use of phased felling-based management of catchments and the complexities of within catchment processes. Keywords: deforestation, water quality, acidification, pH, nitrate, alkalinity, ANC, aluminium, dissolved organic carbon, Plynlimon, forest, spruce, Afon Hafren, podzol


Sign in / Sign up

Export Citation Format

Share Document