Herbicide loss in runoff: effects of herbicide properties, slope, and rainfall intensity

Soil Research ◽  
2004 ◽  
Vol 42 (1) ◽  
pp. 17 ◽  
Author(s):  
K. Müller ◽  
M. Trolove ◽  
T. K. James ◽  
A. Rahman

Runoff potential of 5 herbicides (acetochlor, atrazine, hexazinone, pendimethalin, and terbuthylazine) was evaluated in a small-scale study under simulated rainfall on a cultivated Hamilton clay loam soil. At 24 h after herbicide application, rainfall events of different intensities were simulated to 0.5-m2 field plots with 20% (70, 88, and 111 mm/h) and 30% (60, 70, and 80 mm/h) slope, respectively. The objective of this study was to compare the behaviour of pesticides covering a range of properties under identical hydrodynamic conditions. Sediment amounts and herbicide concentrations were determined in the runoff samples. As the transported sediment amounts were not sufficient for chemical analyses, herbicide residues attached to sediment were estimated using Kd values determined locally for the soil. Whereas pendimethalin concentrations followed no noticeable pattern, the concentrations for the other herbicides were highest in the first runoff samples, and decreased exponentially with further rain. Results show that herbicides were primarily transported in their dissolved form with the exception of pendimethalin. Slope affected cumulative runoff, sediment, and herbicide losses significantly (P < 0.05). The impact of increased rainfall intensity on runoff initiation followed a similar trend, but herbicide losses from plots exposed to different intensities were not always significant. Losses dissolved in runoff from plots with 20% slope were ≤1% of the applied herbicide, whereas on plots with 30% slope the maximum recorded loss was 65%. Here, losses for all herbicides ranged between 1 and 7% at 60 mm/h and 8 and 65% at 80 mm/h. Exports of herbicides with moderate solubility were negatively correlated with their Kd values and their water solubility.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Saeed Shojaei ◽  
Zahra Kalantari ◽  
Jesús Rodrigo-Comino

AbstractSoil degradation due to erosion is a significant worldwide problem at different spatial (from pedon to watershed) and temporal scales. All stages and factors in the erosion process must be detected and evaluated to reduce this environmental issue and protect existing fertile soils and natural ecosystems. Laboratory studies using rainfall simulators allow single factors and interactive effects to be investigated under controlled conditions during extreme rainfall events. In this study, three main factors (rainfall intensity, inclination, and rainfall duration) were assessed to obtain empirical data for modeling water erosion during single rainfall events. Each factor was divided into three levels (− 1, 0, + 1), which were applied in different combinations using a rainfall simulator on beds (6 × 1 m) filled with soil from a study plot located in the arid Sistan region, Iran. The rainfall duration levels tested were 3, 5, and 7 min, the rainfall intensity levels were 30, 60, and 90 mm/h, and the inclination levels were 5, 15, and 25%. The results showed that the highest rainfall intensity tested (90 mm/h) for the longest duration (7 min) caused the highest runoff (62 mm3/s) and soil loss (1580 g/m2/h). Based on the empirical results, a quadratic function was the best mathematical model (R2 = 0.90) for predicting runoff (Q) and soil loss. Single-factor analysis revealed that rainfall intensity was more influential for runoff production than changes in time and inclination, while rainfall duration was the most influential single factor for soil loss. Modeling and three-dimensional depictions of the data revealed that sediment production was high and runoff production lower at the beginning of the experiment, but this trend was reversed over time as the soil became saturated. These results indicate that avoiding the initial stage of erosion is critical, so all soil protection measures should be taken to reduce the impact at this stage. The final stages of erosion appeared too complicated to be modeled, because different factors showed differing effects on erosion.


2021 ◽  
Author(s):  
Christoph Sauter ◽  
Christopher White ◽  
Hayley Fowler ◽  
Seth Westra

&lt;p&gt;Heatwaves and extreme rainfall events are natural hazards that can have severe impacts on society. The relationship between temperature and extreme rainfall has received scientific attention with studies focussing on how single daily or sub-daily rainfall extremes are related to day-to-day temperature variability. However, the impact multi-day heatwaves have on sub-daily extreme rainfall events and how extreme rainfall properties change during different stages of a heatwave remains mostly unexplored.&lt;/p&gt;&lt;p&gt;In this study, we analyse sub-daily rainfall records across Australia, a country that experiences severe natural hazards on a frequent basis, and determine their extreme rainfall properties, such as rainfall intensity, duration and frequency during SH-summer heatwaves. These properties are then compared to extreme rainfall properties found outside heatwaves, but during the same time of year, to examine to what extent they differ from normal conditions. We also conduct a spatial analysis to investigate any spatial patterns that arise.&lt;/p&gt;&lt;p&gt;We find that rainfall breaking heatwaves is often more extreme than average rainfall during the same time of year. This is especially prominent on the eastern and south-eastern Australian coast, where frequency and intensity of sub-daily rainfall extremes show an increase during the last day or the day immediately after a heatwave. We also find that although during heatwaves the average rainfall amount and duration decreases, there is an increase in sub-daily rainfall intensity when compared to conditions outside heatwaves. This implies that even though Australian heatwaves are generally characterised by dry conditions, rainfall occurrences within heatwaves are more intense.&lt;/p&gt;&lt;p&gt;Both heatwaves and extreme rainfall events pose great challenges for many sectors such as agriculture, and especially if they occur together. Understanding how and to what degree these events co-occur could help mitigate the impacts caused by them.&lt;/p&gt;


2002 ◽  
Vol 55 ◽  
pp. 172-176 ◽  
Author(s):  
K. M?ller ◽  
M. Trolove ◽  
T.K. James ◽  
A. Rahman

Runoff potential of five herbicides (acetochlor atrazine hexazinone pendimethalin and terbuthylazine) was investigated on a fallow Hamilton clay loam soil with a 10 slope Twentyfour hours after the herbicide application simulated rainfall was applied at three intensities Sediment amounts and herbicide concentrations were determined in the water phase of runoff samples Herbicide residues attached to sediment were estimated using Kdvalues determined locally for the Hamilton clay loam soil Pesticide concentrations were the highest in the first runoff samples and decreased exponentially with further rain Results show that herbicides were primarily transported in their dissolved forms in runoff and that losses are dependent on the time to runoff and runoff rates Rainfall intensity had no significant effect on herbicide losses In all cases losses were


2021 ◽  
Vol 3 ◽  
Author(s):  
D. Brian Rogers ◽  
Michelle E. Newcomer ◽  
Jonathan H. Raberg ◽  
Dipankar Dwivedi ◽  
Carl Steefel ◽  
...  

Recent studies in snowmelt-dominated catchments have documented changes in nitrogen (N) retention over time, such as declines in watershed exports of N, though there is a limited understanding of the controlling processes driving these trends. Working in the mountainous headwater East River Colorado watershed, we explored the effects of riparian hollows as N-cycling hotspots and as important small-scale controls on observed watershed trends. Using a modeling-based approach informed by remote sensing and in situ observations, we simulated the N-retention capacity of riparian hollows with seasonal and yearly hydrobiogeochemical perturbations imposed as drivers. We then implemented a scaling approach to quantify the relative contribution of riparian hollows to the total river corridor N budget. We found that riparian hollows primarily serve as N sinks, with N-transformation rates significantly limited by periods of enhanced groundwater upwelling and promoted at the onset of rainfall events. Given these observed hydrologic controls, we expect that the nitrate (NO3-) sink capacity of riparian hollows will increase in magnitude with future climatic perturbations, specifically the shift to more frequent rainfall events and fewer snowmelt events, as projected for many mountainous headwater catchments. Our current estimates suggest that while riparian hollows provision ~5–20% of NO3- to the river network, they functionally act as inhibitors to upland NO3- reaching the stream. Our work linking transient hydrological conditions to numerical biogeochemical simulations is an important step in assessing N-retaining features relative to the watershed N budget and better understanding the role of small-scale features within watersheds.


2015 ◽  
Vol 3 (1) ◽  
pp. 31 ◽  
Author(s):  
Rohani Mohd ◽  
Badrul Hisham Kamaruddin ◽  
Khulida Kirana Yahya ◽  
Elias Sanidas

The purpose of the present study is twofold: first, to investigate the true values of Muslim owner managers; second, to examine the impact of these values on entrepreneurial orientations of Muslim small-scale entrepreneurs. 850 Muslim owner managers were selected randomly using the sampling frame provided by MajlisAmanah Rakyat Malaysia (MARA). 162 completed questionnaires were collected and analyzed. For this paper only two dimensions of entrepreneurial orientations were analyzed: proactive orientation and innovative orientation. Interestingly, the findings revealed that Muslim businessmen/women are honest, loyal, disciplined and hard working. Loyalty and honesty are positively related to proactive orientation, while discipline and hard-work are positively related to innovative orientation. The findings provide implications for existing relevant theories, policy makers, practitioners and learning institutions. 


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4658
Author(s):  
Artur Guzy ◽  
Wojciech T. Witkowski

Land subsidence caused by groundwater withdrawal induced by mining is a relatively unknown phenomenon. This is primarily due to the small scale of such movements compared to the land subsidence caused by deposit extraction. Nonetheless, the environmental impact of drainage-related land subsidence remains underestimated. The research was carried out in the “Bogdanka” coal mine in Poland. First, the historical impact of mining on land subsidence and groundwater head changes was investigated. The outcomes of these studies were used to construct the influence method model. With field data, our model was successfully calibrated and validated. Finally, it was used for land subsidence estimation for 2030. As per the findings, the field of mining exploitation has the greatest land subsidence. In 2014, the maximum value of the phenomenon was 0.313 cm. However, this value will reach 0.364 m by 2030. The spatial extent of land subsidence caused by mining-induced drainage extends up to 20 km beyond the mining area’s boundaries. The presented model provided land subsidence patterns without the need for a complex numerical subsidence model. As a result, the method presented can be effectively used for land subsidence regulation plans considering the impact of mining on the aquifer system.


Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 105
Author(s):  
Argelia E. Rascón-Ramos ◽  
Martín Martínez-Salvador ◽  
Gabriel Sosa-Pérez ◽  
Federico Villarreal-Guerrero ◽  
Alfredo Pinedo-Alvarez ◽  
...  

Understanding soil moisture behavior in semi-dry forests is essential for evaluating the impact of forest management on water availability. The objective of the study was to analyze soil moisture based in storm observations in three micro-catchments (0.19, 0.20, and 0.27 ha) with similar tree densities, and subject to different thinning intensities in a semi-dry forest in Chihuahua, Mexico. Vegetation, soil characteristics, precipitation, and volumetric water content were measured before thinning (2018), and after 0%, 40%, and 80% thinning for each micro-catchment (2019). Soil moisture was low and relatively similar among the three micro-catchments in 2018 (mean = 8.5%), and only large rainfall events (>30 mm) increased soil moisture significantly (29–52%). After thinning, soil moisture was higher and significantly different among the micro-catchments only during small rainfall events (<10 mm), while a difference was not noted during large events. The difference before–after during small rainfall events was not significant for the control (0% thinning); whereas 40% and 80% thinning increased soil moisture significantly by 40% and 53%, respectively. Knowledge of the response of soil moisture as a result of thinning and rainfall characteristics has important implications, especially for evaluating the impact of forest management on water availability.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Marta Rychert ◽  
Machel Anthony Emanuel ◽  
Chris Wilkins

Abstract Introduction The establishment of a legal market for medicinal cannabis under the Dangerous Drugs Amendment Act 2015 has positioned Jamaica at the forefront of cannabis law reform in the developing world. Many local cannabis businesses have attracted investment from overseas, including from Canada, US and Europe. Aim To explore the opportunities and risks of foreign investment in an emerging domestic legal cannabis market in a developing country. Methods Thematic analysis of semi-structured face-to-face interviews with 22 key informants (KIs) from the Jamaican government, local cannabis industry, academia and civil society, and field observations of legal and illegal cannabis cultivators. Results KIs from the Jamaican public agencies and domestic cannabis entrepreneurs saw foreign investment as an essential source of capital to finance the start-up costs of legal cannabis businesses. Local cannabis entrepreneurs prioritised investors with the greatest financial resources, brand reputation and export networks. They also considered how allied an investor was with their business vision (e.g., organic cultivation, medical vs. recreational). The key benefits of partnering with a foreign investor included transfer of technical knowledge and financial capital, which enhanced production, quality assurance and seed-to-sale tracking. Some KIs expressed concern over investors’ focus on increasing production efficiency and scale at the expense of funding research and development (R&D) and clinical trials. KIs from the local industry, government agencies and civil society highlighted the risks of ‘predatory’ shareholder agreements and domestic political interference. Concerns were raised about the impact of foreign investment on the diversity of the domestic cannabis sector in Jamaica, including the commitment to transition traditional illegal small-scale cannabis cultivators to the legal sector. Conclusion While foreign investment has facilitated the commercialisation of the cannabis sector in Jamaica, regulatory measures are also needed to protect the domestic industry and support the transition of small-scale illegal cultivators to the legal regime. Foreign investments may alter the economic, social and political determinants of health in transitioning from illegal to legal cannabis market economy.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 485
Author(s):  
Vera Schmid ◽  
Antje Trabert ◽  
Judith (Schäfer) Keller ◽  
Mirko Bunzel ◽  
Heike P. Karbstein ◽  
...  

Food by-products can be used as natural and sustainable food ingredients. However, a modification is needed to improve the technofunctional properties according to the specific needs of designated applications. A lab-scale twin-screw extruder was used to process enzymatically treated apple pomace from commercial fruit juice production. To vary the range of the thermomechanical treatment, various screw speeds (200, 600, 1000 min−1), and screw configurations were applied to the raw material. Detailed chemical and functional analyses were performed to develop a comprehensive understanding of the impact of the extrusion processing on apple pomace composition and technofunctional properties as well as structures of individual polymers. Extrusion at moderate thermomechanical conditions increased the water absorption, swelling, and viscosity of the material. An increase in thermomechanical stress resulted in a higher water solubility index, but negatively affected the water absorption index, viscosity, and swelling. Scanning electron microscopy showed an extrusion-processing-related disruption of the cell wall. Dietary fiber analysis revealed an increase of soluble dietary fiber from 12.6 to 17.2 g/100 g dry matter at maximum thermo-mechanical treatment. Dietary fiber polysaccharide analysis demonstrated compositional changes, mainly in the insoluble dietary fiber fraction. In short, pectin polysaccharides seem to be susceptible to thermo-mechanical stress, especially arabinans as neutral side chains of rhamnogalacturonan I.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 102
Author(s):  
Frauke Kachholz ◽  
Jens Tränckner

Land use changes influence the water balance and often increase surface runoff. The resulting impacts on river flow, water level, and flood should be identified beforehand in the phase of spatial planning. In two consecutive papers, we develop a model-based decision support system for quantifying the hydrological and stream hydraulic impacts of land use changes. Part 1 presents the semi-automatic set-up of physically based hydrological and hydraulic models on the basis of geodata analysis for the current state. Appropriate hydrological model parameters for ungauged catchments are derived by a transfer from a calibrated model. In the regarded lowland river basins, parameters of surface and groundwater inflow turned out to be particularly important. While the calibration delivers very good to good model results for flow (Evol =2.4%, R = 0.84, NSE = 0.84), the model performance is good to satisfactory (Evol = −9.6%, R = 0.88, NSE = 0.59) in a different river system parametrized with the transfer procedure. After transferring the concept to a larger area with various small rivers, the current state is analyzed by running simulations based on statistical rainfall scenarios. Results include watercourse section-specific capacities and excess volumes in case of flooding. The developed approach can relatively quickly generate physically reliable and spatially high-resolution results. Part 2 builds on the data generated in part 1 and presents the subsequent approach to assess hydrologic/hydrodynamic impacts of potential land use changes.


Sign in / Sign up

Export Citation Format

Share Document