scholarly journals A novel nano-sized Co3O4@C catalyst derived from Co-MOF template for efficient Hg0 removal at low temperatures with outstanding SO2 resistance

Author(s):  
Jiacheng Zhou ◽  
Qicheng Shen ◽  
Jie Yang ◽  
Muhammad Tariq ◽  
Wei Sun ◽  
...  
2016 ◽  
Vol 55 (10) ◽  
pp. 2677-2685 ◽  
Author(s):  
Weiwei Yang ◽  
Fudong Liu ◽  
Lijuan Xie ◽  
Zhihua Lian ◽  
Hong He

Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1034 ◽  
Author(s):  
Caixia Liu ◽  
Huijun Wang ◽  
Ziyin Zhang ◽  
Qingling Liu

The selective catalytic reduction (SCR) has been widely used in industrial denitrification owing to its high denitrification efficiency, low operating costs, and simple operating procedures. However, coal containing a large amount of sulfur will produce SO2 during combustion, which makes the catalyst easy to be deactivated, thus limiting the application of this technology. This review summarizes the latest NH3-SCR reaction mechanisms and the deactivation mechanism of catalyst in SO2-containing flue gas. Some strategies are summarized for enhancing the poison-resistance through modification, improvement of support, the preparation of complex oxide catalyst, optimizing the preparation methods, and acidification. The mechanism of improving sulfur resistance of catalysts at low temperatures is summarized, and the further development of the catalyst is also prospected. This paper could provide a reference and guidance for the development of SO2 resistance of the catalyst at low temperatures.


2021 ◽  
Author(s):  
Jiacheng Zhou ◽  
Qicheng Shen ◽  
Jie Yang ◽  
Muhammad Tariq ◽  
Wei Sun ◽  
...  

Abstract Co3O4 is a promising Hg0 removal catalyst for industrial application. Operating temperature and low sulfur resistance are two of the main problems that hinder its industrial application in Hg0 removal. Herein, a metal-organic framework (Co-BDC) was introduced as a sacrificial template to obtain the catalyst nano-sized Co3O4@C by calcination. Part of the organic ligands carbonized during the calcination. Carbon wrapped Co3O4 and reduced metal agglomeration. The optimal Hg0 removal temperature of the existing cobalt oxides catalysts was always around 150 ℃, but H2-TPR showed that the oxygen atoms on the Co3O4@C were more active than those on commercial Co3O4, causing the Hg0 removal temperature window of Co3O4@C to shift to lower temperatures. The Hg0 removal efficiency of Co3O4@C could reach almost 100% even at 25 ℃. In the meanwhile, Co3O4@C also showed a strong SO2 resistance at ambient temperature. Experimental results and characterization proved that SO2 did not compete with Hg0 on the surface of Co3O4 at low temperatures. On the contrary, it participated in the oxidation of Hg0. This is a great improvement for Co3O4 catalyst in Hg0 removal. It reduces the restrictions on the application of Co3O4 in Hg0 removal. Co3O4@C shows considerable potential as an Hg0 removal catalyst.


2017 ◽  
Vol 43 (10) ◽  
pp. 5413-5432 ◽  
Author(s):  
Fengxiang Li ◽  
Junlin Xie ◽  
De Fang ◽  
Feng He ◽  
Kai Qi ◽  
...  

Author(s):  
E. Knapek ◽  
H. Formanek ◽  
G. Lefranc ◽  
I. Dietrich

A few years ago results on cryoprotection of L-valine were reported, where the values of the critical fluence De i.e, the electron exposure which decreases the intensity of the diffraction reflections by a factor e, amounted to the order of 2000 + 1000 e/nm2. In the meantime a discrepancy arose, since several groups published De values between 100 e/nm2 and 1200 e/nm2 /1 - 4/. This disagreement and particularly the wide spread of the results induced us to investigate more thoroughly the behaviour of organic crystals at very low temperatures during electron irradiation.For this purpose large L-valine crystals with homogenuous thickness were deposited on holey carbon films, thin carbon films or Au-coated holey carbon films. These specimens were cooled down to nearly liquid helium temperature in an electron microscope with a superconducting lens system and irradiated with 200 keU-electrons. The progress of radiation damage under different preparation conditions has been observed with series of electron diffraction patterns and direct images of extinction contours.


Author(s):  
H.A. Cohen ◽  
W. Chiu

The goal of imaging the finest detail possible in biological specimens leads to contradictory requirements for the choice of an electron dose. The dose should be as low as possible to minimize object damage, yet as high as possible to optimize image statistics. For specimens that are protected by low temperatures or for which the low resolution associated with negative stain is acceptable, the first condition may be partially relaxed, allowing the use of (for example) 6 to 10 e/Å2. However, this medium dose is marginal for obtaining the contrast transfer function (CTF) of the microscope, which is necessary to allow phase corrections to the image. We have explored two parameters that affect the CTF under medium dose conditions.Figure 1 displays the CTF for carbon (C, row 1) and triafol plus carbon (T+C, row 2). For any column, the images to which the CTF correspond were from a carbon covered hole (C) and the adjacent triafol plus carbon support film (T+C), both recorded on the same micrograph; therefore the imaging parameters of defocus, illumination angle, and electron statistics were identical.


Author(s):  
F. H. Louchet ◽  
L. P. Kubin

Experiments have been carried out on the 3 MeV electron microscope in Toulouse. The low temperature straining holder has been previously described Images given by an image intensifier are recorded on magnetic tape.The microtensile niobium samples are cut in a plane with the two operative slip directions [111] and lying in the foil plane. The tensile axis is near [011].Our results concern:- The transition temperature of niobium near 220 K: at this temperature and below an increasing difference appears between the mobilities of the screw and edge portions of dislocations loops. Source operation and interactions between screw dislocations of different slip system have been recorded.


Author(s):  
J. A. Traquair ◽  
E. G. Kokko

With the advent of improved dehydration techniques, scanning electron microscopy has become routine in anatomical studies of fungi. Fine structure of hyphae and spore surfaces has been illustrated for many hyphomycetes, and yet, the ultrastructure of the ubiquitous soil fungus, Geomyces pannorus (Link) Sigler & Carmichael has been neglected. This presentation shows that scanning and transmission electron microscopical data must be correlated in resolving septal structure and conidial release in G. pannorus.Although it is reported to be cellulolytic but not keratinolytic, G. pannorus is found on human skin, animals, birds, mushrooms, dung, roots, and frozen meat in addition to various organic soils. In fact, it readily adapts to growth at low temperatures.


Author(s):  
Alain Claverie ◽  
Zuzanna Liliental-Weber

GaAs layers grown by MBE at low temperatures (in the 200°C range, LT-GaAs) have been reported to have very interesting electronic and transport properties. Previous studies have shown that, before annealing, the crystalline quality of the layers is related to the growth temperature. Lowering the temperature or increasing the layer thickness generally results in some columnar polycrystalline growth. For the best “temperature-thickness” combinations, the layers may be very As rich (up to 1.25%) resulting in an up to 0.15% increase of the lattice parameter, consistent with the excess As. Only after annealing are the technologically important semi-insulating properties of these layers observed. When annealed in As atmosphere at about 600°C a decrease of the lattice parameter to the substrate value is observed. TEM studies show formation of precipitates which are supposed to be As related since the average As concentration remains almost unchanged upon annealing.


Author(s):  
Thao A. Nguyen

It is well known that the large deviations from stoichiometry in iron sulfide compounds, Fe1-xS (0≤x≤0.125), are accommodated by iron vacancies which order and form superstructures at low temperatures. Although the ordering of the iron vacancies has been well established, the modes of vacancy ordering, hence superstructures, as a function of composition and temperature are still the subject of much controversy. This investigation gives direct evidence from many-beam lattice images of Fe1-xS that the 4C superstructure transforms into the 3C superstructure (Fig. 1) rather than the MC phase as previously suggested. Also observed are an intrinsic stacking fault in the sulfur sublattice and two different types of vacancy-ordering antiphase boundaries. Evidence from selective area optical diffractograms suggests that these planar defects complicate the diffraction pattern greatly.


Sign in / Sign up

Export Citation Format

Share Document