Conformance of sowing dates for maximizing heat use efficiency and seed cotton yield in arid to semi-arid cotton zone of Pakistan

Author(s):  
Muhammad Akhlaq Mudassir ◽  
Fahd Rasul ◽  
Tasneem Khaliq ◽  
Muhammad Yaseen
Author(s):  
João H. Zonta ◽  
José R. C. Bezerra ◽  
Valdinei Sofiatti ◽  
Ziany N. Brandão

<title>ABSTRACT</title><p>The objective of this study was to evaluate the effect of irrigation depths on seed cotton yield and water-use efficiency of cotton cultivars in the Brazilian semi-arid region. Field experiment was conducted during two consecutive years in the Apodi region, RN, using sprinkler irrigation. The experiment consisted of factorial combination in split-plots, composed of four irrigation depths (130; 100; 70 and 40% ETc and four cotton cultivars - FiberMax 993, BRS 286, BRS 336 and BRS 335), in randomized block design with 4 replicates. Data were evaluated by mean test (Tukey) and regression analysis. Considering the irrigation depths of 40% ETc, cotton yield was 48% lower compared to the higher irrigation depth (130% ETc). The higher water-use efficiency (0.69 kg m<sup>-3</sup>) was obtained with 70% ETc irrigation depth. The highest seed cotton yield was achieved with the higher water depth for all evaluated cultivars. Yield response factor (Ky) was equal to 0.632, 0.711, 0.784 and 0.858, for FiberMax 993, BRS 286, BRS 335 and BRS 336 cultivars, respectively. FiberMax 993 and BRS 286 cultivars presented the best performance, showing that they are more suitable for irrigated farming in the semi-arid region.</p>


2018 ◽  
Vol 3 (1) ◽  
pp. 684-697 ◽  
Author(s):  
Ayman El Sabagh ◽  
Abdelhamid M. Omar ◽  
Mohamed El Menshawi ◽  
Samir El Okkiah

Abstract Application of organic compounds in cotton balances its vegetative and reproductive growth, as well as to improve the seed cotton yield and lint quality properties. Field experiments were conducted with some organic compounds to determine their effects on cotton yield and quality properties of cotton under two sowing times.The experiment was conducted at Sakha Agricultural Research Station, Cotton Research Institute, Egypt in 2015 and 2016. In these studies, two sowing times viz. optimum and delay sowing and two levels (200 and 400 ppm) of organic compounds viz. ascorbic, ascobine and salicylic acids were used. The results indicated that the optimum sowing date gave the largest area of single leaf at 90 and 120 DAS, as well as it induced an increase in dry weight (g) of plant organs at 120 DAS, while, the late sowing significantly reduced the leaves dry weight both at 90 and 120 DAS. Both seed cotton yield and lint cotton yield (kentar feddan-1) were significantly increased in optimum sowing condition and sharply declined as delayed sowing date. The number of opened bolls plant-1 were also significantly reduced in late sowing. Lint percentage, seed index and seed cotton weight boll-1 were also significantly affected by sowing dates. Leaf pigment (total chlorophyll) was significantly affected by sowing date recorded at 90 and 120 DAS, while lower values of total chlorophyll was recorded in late sown plants. Also, sowing dates had no significant effect on both oil and protein seed content. This study has shown that timely sowing of cotton seed and foliar application of ascorbic acid, ascobine or salicylic acid with concentration of 200 or 400 ppm at flower initiation stage and peak of flowering stage had significant positive effects on seed cotton yield and lint quality properties. According to these results it can be suggested that usage of organic compounds to improve the yield and quality properties, especially in late sowing for ‘Giza 94' cotton cultivar at Kafr- Elsheikh district, Egypt.


2016 ◽  
Vol 53 (2) ◽  
pp. 202-209 ◽  
Author(s):  
ROMAIN LOISON ◽  
ALAIN AUDEBERT ◽  
JEAN-LOUIS CHOPART ◽  
PHILIPPE DEBAEKE ◽  
DOMINIQUE DESSAUW ◽  
...  

SUMMARYSeed cotton yield in Northern Cameroon has been declining since the 80s despite breeding efforts. In order to evaluate the impact of genetic improvement on this decline, we conducted field experiments in two locations with 10 widely grown cotton cultivars released in Cameroon between 1950 and 2009. The rate of genetic gain (GG) was estimated with a linear regression of the cultivar mean on its year of release (YR). Contrasts between rates of GG observed with different planting dates were estimated and tested. Our results revealed a rate of GG on fibre yield of 3.3 kg ha−1 year−1 due to increased ginning out-turn (3.9% and 6.2% in 60 years in Garoua and Maroua, respectively). There was no GG on leaf area index (LAI), radiation use efficiency (RUE), aerial biomass, harvest index and on seed cotton yield. We concluded that cotton breeding efforts in Cameroon have successfully improved cotton fibre yield but there is still some room for seed cotton yield improvement.


2019 ◽  
Vol 35 (6) ◽  
Author(s):  
Damião Ranieri Queiroz ◽  
Francisco José Correa Farias ◽  
José Jaime Vasconcelos Cavalcanti ◽  
Luiz Paulo de Carvalho ◽  
Diogo Gonçalves Neder ◽  
...  

Upland cotton fiber is one of the most used natural fibers in the production of textile materials worldwide. For this reason, the selection of genotypes that meet the industry’s requirements is one of the main goals of cotton breeding programs. This study aimed to estimate the phenotypic and genotypic correlations among fiber traits and identify the direct and indirect effects of these traits on seed cotton yield of upland cotton genotypes in the semi-arid Brazilian Northeast. This study assessed 21 upland cotton genotypes from a complete diallel cross without reciprocals. The design was randomized blocks, with three replications and 21 treatments. The experiment was conducted in the municipality of Patos - PB, in 2015. The statistical analysis consisted of analysis of variance by the F test, phenotypic and genotypic correlation analysis, and path analysis. The studied materials revealed genetic variability for all traits. Path analysis has shown that the traits fiber elongation, fiber strength, and fiber fineness have a direct positive effect on seed cotton yield.


2017 ◽  
Vol 32 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Matheus G. Palhano ◽  
Jason K. Norsworthy ◽  
Tom Barber

AbstractWith the recent confirmation of protoporphyrinogen oxidase (PPO)-resistant Palmer amaranth in the US South, concern is increasing about the sustainability of weed management in cotton production systems. Cover crops can help to alleviate this problem, as they can suppress weed emergence via allelochemicals and/or a physical residue barrier. Field experiments were conducted in 2014 and 2015 at the Arkansas Agricultural Research and Extension Center to evaluate various cover crops for suppressing weed emergence and protecting cotton yield. In both years, cereal rye and wheat had the highest biomass production, whereas the amount of biomass present in spring did not differ among the remaining cover crops. All cover crops initially diminished Palmer amaranth emergence. However, cereal rye provided the greatest suppression, with 83% less emergence than in no cover crop plots. Physical suppression of Palmer amaranth and other weeds with cereal residues is probably the greatest contributor to reducing weed emergence. Seed cotton yield in the legume and rapeseed cover crop plots were similar when compared with the no cover crop treatment. The seed cotton yield collected from cereal cover crop plots was lower than from other treatments due to decreased cotton stand.


2021 ◽  
Vol 9 (3) ◽  
pp. 105-109
Author(s):  
V. J. Zapadiya ◽  

A field experiment was conducted to evaluate the 45 F1 hybrids derived from 10×10 half diallel fashion along with ten parents and one standard check GN.Cot.Hy-14 were sown in randomized block design with three replications during kharif -2017 at Cotton Research Station, Junagadh Agricultural University, Junagadh. The genetic components of variation were determined for 12 characters viz., days to 50% flowering, days to 50% boll opening, plant height (cm), number of monopodia per plant, number of sympodia per plant, number of bolls per plant, boll weight (g), seed cotton yield per plant (g), ginning percentage (%), seed index (g), lint index (g) and oil percentage (%).The estimate of the components of variation revealed significant results for both additive (D) as well as dominance effects (H1 and H2) for all the characters except plant height non-significant H2 component, but in majority of traits (except plant height, lint index) H1 was higher than D indicating dominance components were important in the inheritance of seed cotton yield and its components. The average degree of dominance (H1/D)1/2 was found to be more than unity for all the traits (except plant height, number of monopodia per plant and lint index indicating partial dominance) indicating over dominance. Asymmetrical distribution of positive and negative genes in the parents was observed for all the traits. High estimates of heritability in narrow sense was observed for days to 50% flowering, days to 50 % boll bursting, number of monopodia per plant, ginning percentage (%), lint index (g) and oil content (%) suggesting that selection based on these attribute would lead to rapid improvement. Due to preponderance of non-additive gene effects of seed cotton yield per plant and most of its component traits, heterosis breeding would also be practically feasible in cotton.


Author(s):  
Bilal Nawaz ◽  
Saira Sattar ◽  
Bilal Bashir ◽  
Muhammad Jamshaid ◽  
Khadim Hussain ◽  
...  

Background: Cotton (Gossypium hirsutum L.) is grown in more than sixty countries worldwide. It is an important fiber crop in the world. It plays a vital role in our national economy being the source of earning of foreign exchange, therefore, it is considered to be the backbone of the economy of Pakistan. In Pakistan, millions of families are associated with cotton and textile industry for their livelihood.  Results: In this experiment F2 population of the cross L. A. Frego Bract x CIM-600 and their parents was sown in randomized complete block design with three replications during normal growing season of the year 2014 to sort out best performing genotypes for yield related traits. Analysis of variance (ANOVA) revealed that parental and their F2 population showed significant differences for all the observed agronomic traits (plant height, number of monopodia branches, number of sympodial branches, number of bolls per plant, boll weight, ginning out turn, bract type, boll shape, beak size, seed cotton yield, staple length, fiber strength and fiber fineness). Estimation of correlation revealed that seed cotton yield was found positively correlated sympodial branches, fiber fineness and boll weight while ginning out turn, bract type, beak size, staple length and fiber strength were negatively associated with seed cotton yield. Epistasis was not found to be involved in any of the traits. Conclusion:  The correlation and genetics study of various yield related traits provides us useful information for effective selection and sustainable breeding programs. Estimation of broad sense heritability ( ) in F2 populations for different traits vary as following order; ginning out turn>plant height>seed cotton yield>sympodia branches>fiber length>fiber strength>bolls per plant>monopodia branches>boll weight>fiber fineness with heritability 0.90, 0.79, 0.78, 0.75, 0.73, 0.71 0.67, 0.64, 0.63 and 0.50 respectively. Results suggested form heritability and correlation that these traits can be improved either through appropriate selection method or hybrid breeding programme.


Sign in / Sign up

Export Citation Format

Share Document