Wind flow and wind loads on the surface of a towershaped building: Numerical simulations and wind tunnel experiment

2008 ◽  
Vol 51 (1) ◽  
pp. 103-113
Author(s):  
YuJun Jiang ◽  
HuiZhi Liu ◽  
BoYin Zhang ◽  
FengRong Zhu ◽  
Bin Liang ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3877 ◽  
Author(s):  
Hyun-Goo Kim ◽  
Wan-Ho Jeon

For the purposes of this study, a wind tunnel experiment and a numerical analysis during ebb and high tides were conducted to determine the positive and negative effects of wind flow influenced by a seawall structure on the performance of wind turbines installed along a coastal seawall. The comparison of the wind flow field between a wind tunnel experiment performed with a 1/100 scale model and a computational fluid dynamics (CFD) analysis confirmed that the MP k-turbulence model estimated flow separation on the leeside of the seawall the most accurately. The CFD analysis verified that wind speed-up occurred due to the virtual hill effect caused by the seawall’s windward slope and the recirculation zone of its rear face, which created a positive effect by mitigating wind shear while increasing the mean wind speed in the wind turbine’s rotor plane. In contrast, the turbulence effect of flow separation on the seawall’s leeside was limited to the area below the wind turbine rotor, and had no negative effect. The use of the CFD verified with the comparison with the wind tunnel experiment was extended to the full-scale seawall, and the results of the analysis based on the wind turbine Supervisory Control and Data Acquisition (SCADA) data of a wind farm confirmed that the seawall effect was equivalent to a 1.5% increase in power generation as a result of a mitigation of the wind profile.


2013 ◽  
Vol 774-776 ◽  
pp. 460-464
Author(s):  
Guo Xin Wang ◽  
Yinuo Hu ◽  
Ting Ting Xu ◽  
Ze Fei Li ◽  
Bo Yang

This research used CFD softwares to simulate the downforce generated with the airfoil set to different height, and also analyzed the difference on the downforce when the airfoil is set on the racing car. Several pairs of front wing (FW) and rear wing (RW) of different ground clearances were chosen during the wind tunnel experiment and the results were compared with those of the numerical simulations. With the results of the simulations as well as the experiment, an appropriate solution of the ground clearances of the FW and RW for different kinds of race is provided.


2016 ◽  
Vol 15 (3) ◽  
pp. 029-051 ◽  
Author(s):  
Tomasz Lipecki ◽  
Paulina Jamińska

The paper reviews nowadays problems and issues of wind engineering and aerodynamics of building structures. The article mainly focuses on aerodynamics of building structures, shortly characterizing theoretical bases, which one must take into account when assuming wind loads. The three different approaches of collecting information in the field of wind loads are described: in-situ measurements, wind tunnel tests and numerical simulations. Also, a review of the most important contemporary issues of wind engineering is presented.


2021 ◽  
Author(s):  
Thomas G. Ivanco ◽  
Donald F. Keller ◽  
Jennifer L. Pinkerton

Author(s):  
Charlotte Hertel ◽  
Christoph Bode ◽  
Dragan Kožulović ◽  
Tim Schneider

An optimized subsonic compressor tandem cascade was investigated experimentally and numerically. Since the design aims at incompressible applications, a low inlet Mach number of 0.175 was used. The experiments were carried out at the low speed cascade wind tunnel at the Technische Universität Braunschweig. For the numerical simulations, the CFD-solver TRACE of DLR Cologne was used, together with a curvature corrected k-ω turbulence model and the γ-Reθ transition model. Besides the incidence variation, the aerodynamic loading has also been varied by contracting endwalls. Results are presented and discussed for different inlet angles and endwall contractions: pressure distribution, loss coefficient, turning, pressure rise, AVDR and Mach number. The comparison of experimental and numerical results is always adequate for a large range of incidence. In addition, a comparison is made to an existing high subsonic tandem cascade and conventional cascades. For the latter the Lieblein diffusion factor has been employed as a measure of aerodynamic loading to complete the Lieblein Chart of McGlumphy [1].


Sign in / Sign up

Export Citation Format

Share Document