scholarly journals What can intraspecific trait variability tell us about fungal communities and adaptations?

2021 ◽  
Vol 20 (7) ◽  
pp. 905-910
Author(s):  
Franz-Sebastian Krah ◽  
Claus Bässler

AbstractAnalyses of species functional traits are suitable to better understand the coexistence of species in a given environment. Trait information can be applied to investigate diversity patterns along environmental gradients and subsequently to predict and mitigate threats associated with climate change and land use. Species traits are used to calculate community trait means, which can be related to environmental gradients. However, while species traits can provide insights into the mechanisms underlying community assembly, they can lead to erroneous inferences if mean trait values are used. An alternative is to incorporate intraspecific trait variability (ITV) into calculating the community trait means. This approach gains increasing acceptance in plant studies. For macrofungi, functional traits have recently been applied to examine their community ecology but, to our knowledge, ITV has yet to be incorporated within the framework of community trait means. Here, we present a conceptual summary of the use of ITV to investigate the community ecology of macrofungi, including the underlying ecological theory. Inferences regarding community trait means with or without the inclusion of ITV along environmental gradients are compared. Finally, an existing study is reconsidered to highlight the variety of possible outcomes when ITV is considered. We hope this Opinion will increase awareness of the potential for within-species trait variability and its importance for statistical inferences, interpretations, and predictions of the mechanisms structuring communities of macro- and other fungi.

2022 ◽  
Vol 4 ◽  
Author(s):  
Matthew J. Hecking ◽  
Jenna M. Zukswert ◽  
John E. Drake ◽  
Martin Dovciak ◽  
Julia I. Burton

Trait-based analyses provide powerful tools for developing a generalizable, physiologically grounded understanding of how forest communities are responding to ongoing environmental changes. Key challenges lie in (1) selecting traits that best characterize the ecological performance of species in the community and (2) determining the degree and importance of intraspecific variability in those traits. Recent studies suggest that globally evident trait correlations (trait dimensions), such as the leaf economic spectrum, may be weak or absent at local scales. Moreover, trait-based analyses that utilize a mean value to represent a species may be misleading. Mean trait values are particularly problematic if species trait value rankings change along environmental gradients, resulting in species trait crossover. To assess how plant traits (1) covary at local spatial scales, (2) vary across the dominant environmental gradients, and (3) can be partitioned within and across taxa, we collected data on 9 traits for 13 tree species spanning the montane temperate—boreal forest ecotones of New York and northern New England. The primary dimension of the trait ordination was the leaf economic spectrum, with trait variability among species largely driven by differences between deciduous angiosperms and evergreen gymnosperms. A second dimension was related to variability in nitrogen to phosphorous levels and stem specific density. Levels of intraspecific trait variability differed considerably among traits, and was related to variation in light, climate, and tree developmental stage. However, trait rankings across species were generally conserved across these gradients and there was little evidence of species crossover. The persistence of the leaf economics spectrum in both temperate and high-elevation conifer forests suggests that ecological strategies of tree species are associated with trade-offs between resource acquisition and tolerance, and may be quantified with relatively few traits. Furthermore, the assumption that species may be represented with a single trait value may be warranted for some trait-based analyses provided traits were measured under similar light levels and climate conditions.


Flora ◽  
2021 ◽  
Vol 279 ◽  
pp. 151806
Author(s):  
Edilvane Inês Zonta ◽  
Guilherme Krahl de Vargas ◽  
João André Jarenkow

2014 ◽  
Vol 29 (4) ◽  
pp. 579-588 ◽  
Author(s):  
Carlos P. Carmona ◽  
Cristina Rota ◽  
Francisco M. Azcárate ◽  
Begoña Peco

2021 ◽  
Vol 288 (1953) ◽  
pp. 20210428
Author(s):  
Staffan Jacob ◽  
Delphine Legrand

Intra- and interspecific variability can both ensure ecosystem functions. Generalizing the effects of individual and species assemblages requires understanding how much within and between species trait variation is genetically based or results from phenotypic plasticity. Phenotypic plasticity can indeed lead to rapid and important changes of trait distributions, and in turn community functionality, depending on environmental conditions, which raises a crucial question: could phenotypic plasticity modify the relative importance of intra- and interspecific variability along environmental gradients? We quantified the fundamental niche of five genotypes in monocultures for each of five ciliate species along a wide thermal gradient in standardized conditions to assess the importance of phenotypic plasticity for the level of intraspecific variability compared to differences between species. We showed that phenotypic plasticity strongly influences trait variability and reverses the relative extent of intra- and interspecific variability along the thermal gradient. Our results show that phenotypic plasticity may lead to either increase or decrease of functional trait variability along environmental gradients, making intra- and interspecific variability highly dynamic components of ecological systems.


2019 ◽  
pp. 231-246
Author(s):  
Gary G. Mittelbach ◽  
Brian J. McGill

There is perhaps no more fundamental question in ecology than what determines the number and kinds of species found in a community and their relative abundances. This chapter lays out a powerful approach to answering this question, based on the concepts of a regional species pool and environmental filters. The species pool is the set of species that could potentially colonize a local site or community. Of these potential colonists, some species are limited in their ability to disperse to site, some are limited by their ability to survive the abiotic environment, and some are limited by their interactions with other species. These “filters” act individually or in concert, and the functional traits of species determine their success in passing through these filters to colonize a local site. There is growing empirical evidence that both abiotic and biotic processes select for specific functional traits. Focusing on the functional traits of species may lead to rules of community assembly that are general and help unify a variety of more specific theories.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1047 ◽  
Author(s):  
Konstantinos Stefanidis ◽  
Eva Papastergiadou

Freshwater ecologists have shown increased interest in assessing biotic responses to environmental change using functional community characteristics. With this article, we investigate the potential of using functional traits of the aquatic plants to assess eutrophication in freshwater lakes. To this end we collected macrophyte and physicochemical data from thirteen lakes in Greece and we applied a trait-based analysis to first identify discrete groups of macrophytes that share common functional traits and then to assess preliminary responses of these groups to water quality gradients. We allocated 11 traits that cover mostly growth form and morphological characteristics to a total of 33 macrophyte species. RLQ and fourth corner analysis were employed to explore potential relationships between species, trait composition and environmental gradients. In addition, a hierarchical cluster analysis was conducted to discriminate groups of plants that share common trait characteristics and then the position of the groups along the environmental gradients was assessed. The results showed total phosphorus, chlorophyll-a, conductivity, pH and Secchi disk depth as main drivers of the environmental gradients. Hierarchical cluster analysis showed a clear separation of macrophyte assemblages with discrete functional characteristics that appeared to associate with different environmental drivers. Thus, rooted submerged plants were related with higher Secchi disk depth, conductivity and alkalinity whereas rooted floating-leaved plants showed a preference for enriched waters with phosphorus and nitrogen. In addition, free-floating plants were related positively with nitrogen and increased pH. Although we did not identify specific trait patterns with environmental drivers, our findings indicate a differentiation of macrophytes based on their functional characteristics along water quality gradients. Overall, the presented results are encouraging for conducting future monitoring studies in lakes focused on the functional plant trait composition, as expanding the current approach to additional lakes and using quantifiable functional characteristics will provide more insight about the potential of trait-based approaches as ecological assessment systems.


Author(s):  
Javier Puy ◽  
Carlos P Carmona ◽  
Hana Dvořáková ◽  
Vít Latzel ◽  
Francesco de Bello

Abstract Background and Aims The observed positive diversity effect on ecosystem functioning has rarely been assessed in terms of intraspecific trait variability within populations. Intraspecific phenotypic variability could stem both from underlying genetic diversity and from plasticity in response to environmental cues. The latter might derive from modifications to a plant’s epigenome and potentially last multiple generations in response to previous environmental conditions. We experimentally disentangled the role of genetic diversity and diversity of parental environments on population productivity, resistance against environmental fluctuations and intraspecific phenotypic variation. Methods A glasshouse experiment was conducted in which different types of Arabidopsis thaliana populations were established: one population type with differing levels of genetic diversity and another type, genetically identical, but with varying diversity levels of the parental environments (parents grown in the same or different environments). The latter population type was further combined, or not, with experimental demethylation to reduce the potential epigenetic diversity produced by the diversity of parental environments. Furthermore, all populations were each grown under different environmental conditions (control, fertilization and waterlogging). Mortality, productivity and trait variability were measured in each population. Key Results Parental environments triggered phenotypic modifications in the offspring, which translated into more functionally diverse populations when offspring from parents grown under different conditions were brought together in mixtures. In general, neither the increase in genetic diversity nor the increase in diversity of parental environments had a remarkable effect on productivity or resistance to environmental fluctuations. However, when the epigenetic variation was reduced via demethylation, mixtures were less productive than monocultures (i.e. negative net diversity effect), caused by the reduction of phenotypic differences between different parental origins. Conclusions A diversity of environmental parental origins within a population could ameliorate the negative effect of competition between coexisting individuals by increasing intraspecific phenotypic variation. A diversity of parental environments could thus have comparable effects to genetic diversity. Disentangling the effect of genetic diversity and that of parental environments appears to be an important step in understanding the effect of intraspecific trait variability on coexistence and ecosystem functioning.


2006 ◽  
Vol 21 (4) ◽  
pp. 178-185 ◽  
Author(s):  
B MCGILL ◽  
B ENQUIST ◽  
E WEIHER ◽  
M WESTOBY

Ecography ◽  
2011 ◽  
Vol 34 (5) ◽  
pp. 856-863 ◽  
Author(s):  
Jan Lepš ◽  
Francesco de Bello ◽  
Petr Šmilauer ◽  
Jiří Doležal

Ecology ◽  
2012 ◽  
Author(s):  
Herman A. Verhoef

At the beginning of the 20th century there was much debate about the “nature” of communities. The driving question was whether the community was a self-organized system of co-occurring species or simply a haphazard collection of populations with minimal functional integration. At that time, two extreme views dominated the discussion: one view considered a community as a superorganism, the member species of which were tightly bound together by interactions that contributed to repeatable patterns of species abundance in space and time. This concept led to the assumption that communities are fundamental entities, to be classified as the Linnaean taxonomy of species. Frederick E. Clements was one of the leading proponents of this approach, and his view became known as the organismic concept of communities. This assumes a common evolutionary history for the integrated species. The opposite view was the individualistic continuum concept, advocated by H. A. Gleason. His focus was on the traits of individual species that allow each to live within specific habitats or geographical ranges. In this view a community is an assemblage of populations of different species whose traits allow persisting in a prescribed area. The spatial boundaries are not sharp, and the species composition can change considerably. Consequently, it was discussed whether ecological communities were sufficiently coherent entities to be considered appropriate study objects. Later, consensus was reached: that properties of communities are of central interest in ecology, regardless of their integrity and coherence. From the 1950s and 1960s onward, the discussion was dominated by the deterministic outcome of local interactions between species and their environments and the building of this into models of communities. This approach, indicated as “traditional community ecology,” led to a morass of theoretical models, without being able to provide general principles about many-species communities. Early-21st-century approaches to bringing general patterns into community ecology concern (1) the metacommunity approach, (2) the functional trait approach, (3) evolutionary community ecology, and (4) the four fundamental processes. The metacommunity approach implicitly recognizes and studies the important role of spatiotemporal dynamics. In the functional trait approach, four themes are focused upon: traits, environmental gradients, the interaction milieu, and performance currencies. This functional, trait-focused approach should have a better prospect of understanding the effects of global changes. Evolutionary community ecology is an approach in which the combination of community ecology and evolutionary biology will lead to a better understanding of the complexity of communities and populations. The four fundamental processes are selection, drift, speciation, and dispersal. This approach concerns an organizational scheme for community ecology, based on these four processes to describe all existing specific models and frameworks, in order to make general statements about process–pattern connections.


Sign in / Sign up

Export Citation Format

Share Document