scholarly journals Montane Temperate-Boreal Forests Retain the Leaf Economic Spectrum Despite Intraspecific Variability

2022 ◽  
Vol 4 ◽  
Author(s):  
Matthew J. Hecking ◽  
Jenna M. Zukswert ◽  
John E. Drake ◽  
Martin Dovciak ◽  
Julia I. Burton

Trait-based analyses provide powerful tools for developing a generalizable, physiologically grounded understanding of how forest communities are responding to ongoing environmental changes. Key challenges lie in (1) selecting traits that best characterize the ecological performance of species in the community and (2) determining the degree and importance of intraspecific variability in those traits. Recent studies suggest that globally evident trait correlations (trait dimensions), such as the leaf economic spectrum, may be weak or absent at local scales. Moreover, trait-based analyses that utilize a mean value to represent a species may be misleading. Mean trait values are particularly problematic if species trait value rankings change along environmental gradients, resulting in species trait crossover. To assess how plant traits (1) covary at local spatial scales, (2) vary across the dominant environmental gradients, and (3) can be partitioned within and across taxa, we collected data on 9 traits for 13 tree species spanning the montane temperate—boreal forest ecotones of New York and northern New England. The primary dimension of the trait ordination was the leaf economic spectrum, with trait variability among species largely driven by differences between deciduous angiosperms and evergreen gymnosperms. A second dimension was related to variability in nitrogen to phosphorous levels and stem specific density. Levels of intraspecific trait variability differed considerably among traits, and was related to variation in light, climate, and tree developmental stage. However, trait rankings across species were generally conserved across these gradients and there was little evidence of species crossover. The persistence of the leaf economics spectrum in both temperate and high-elevation conifer forests suggests that ecological strategies of tree species are associated with trade-offs between resource acquisition and tolerance, and may be quantified with relatively few traits. Furthermore, the assumption that species may be represented with a single trait value may be warranted for some trait-based analyses provided traits were measured under similar light levels and climate conditions.

2021 ◽  
Vol 9 ◽  
Author(s):  
Eliezer Gurarie ◽  
Sriya Potluri ◽  
George Christopher Cosner ◽  
Robert Stephen Cantrell ◽  
William F. Fagan

Seasonal migrations are a widespread and broadly successful strategy for animals to exploit periodic and localized resources over large spatial scales. It remains an open and largely case-specific question whether long-distance migrations are resilient to environmental disruptions. High levels of mobility suggest an ability to shift ranges that can confer resilience. On the other hand, a conservative, hard-wired commitment to a risky behavior can be costly if conditions change. Mechanisms that contribute to migration include identification and responsiveness to resources, sociality, and cognitive processes such as spatial memory and learning. Our goal was to explore the extent to which these factors interact not only to maintain a migratory behavior but also to provide resilience against environmental changes. We develop a diffusion-advection model of animal movement in which an endogenous migratory behavior is modified by recent experiences via a memory process, and animals have a social swarming-like behavior over a range of spatial scales. We found that this relatively simple framework was able to adapt to a stable, seasonal resource dynamic under a broad range of parameter values. Furthermore, the model was able to acquire an adaptive migration behavior with time. However, the resilience of the process depended on all the parameters under consideration, with many complex trade-offs. For example, the spatial scale of sociality needed to be large enough to capture changes in the resource, but not so large that the acquired collective information was overly diluted. A long-term reference memory was important for hedging against a highly stochastic process, but a higher weighting of more recent memory was needed for adapting to directional changes in resource phenology. Our model provides a general and versatile framework for exploring the interaction of memory, movement, social and resource dynamics, even as environmental conditions globally are undergoing rapid change.


2021 ◽  
Vol 288 (1953) ◽  
pp. 20210428
Author(s):  
Staffan Jacob ◽  
Delphine Legrand

Intra- and interspecific variability can both ensure ecosystem functions. Generalizing the effects of individual and species assemblages requires understanding how much within and between species trait variation is genetically based or results from phenotypic plasticity. Phenotypic plasticity can indeed lead to rapid and important changes of trait distributions, and in turn community functionality, depending on environmental conditions, which raises a crucial question: could phenotypic plasticity modify the relative importance of intra- and interspecific variability along environmental gradients? We quantified the fundamental niche of five genotypes in monocultures for each of five ciliate species along a wide thermal gradient in standardized conditions to assess the importance of phenotypic plasticity for the level of intraspecific variability compared to differences between species. We showed that phenotypic plasticity strongly influences trait variability and reverses the relative extent of intra- and interspecific variability along the thermal gradient. Our results show that phenotypic plasticity may lead to either increase or decrease of functional trait variability along environmental gradients, making intra- and interspecific variability highly dynamic components of ecological systems.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Alienor Jeliazkov ◽  
Darko Mijatovic ◽  
Stéphane Chantepie ◽  
Nigel Andrew ◽  
Raphaël Arlettaz ◽  
...  

AbstractThe use of functional information in the form of species traits plays an important role in explaining biodiversity patterns and responses to environmental changes. Although relationships between species composition, their traits, and the environment have been extensively studied on a case-by-case basis, results are variable, and it remains unclear how generalizable these relationships are across ecosystems, taxa and spatial scales. To address this gap, we collated 80 datasets from trait-based studies into a global database for metaCommunity Ecology: Species, Traits, Environment and Space; “CESTES”. Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. The CESTES database is a live database: it will be maintained and expanded in the future as new datasets become available. By its harmonized structure, and the diversity of ecosystem types, taxonomic groups, and spatial scales it covers, the CESTES database provides an important opportunity for synthetic trait-based research in community ecology.


2019 ◽  
Author(s):  
André Tavares Corrêa Dias ◽  
Bruno H P Rosado ◽  
Francesco de Bello ◽  
Nuria Pistón ◽  
Eduardo A de Mattos

Abstract Background Alternative organism designs (i.e., the existence of distinct combinations of traits leading to the same function or performance) are a widespread phenomenon in nature and are considered an important mechanism driving the evolution and maintenance of species trait diversity. However, alternative designs are rarely considered when investigating assembly rules and species effects on ecosystem functioning, assuming that single traits trade-offs affect linearly species fitness and niche differentiation. Scope Here, we first review the concept of alternative designs, and the empirical evidence in plants indicating the importance of the complex effects of multiple traits on fitness. We then discuss how the potential decoupling of single traits with performance and function of species can compromise our ability to detect the mechanisms responsible for species coexistence and the effects of species on ecosystems. Placing traits in the continuum of organism integration level (i.e., traits hierarchically structured ranging from organ-level traits to whole-organism traits) can help in choosing traits more directly related to performance and function. Conclusions We conclude that alternative designs have important implications for the resulting trait patterning expected from different assembly processes. For instance, when only single trade-offs are considered, environmental filtering is expected to result in decreased functional diversity. Alternatively, it may result in increased functional diversity as an outcome of alternative strategies providing different solutions to local conditions and thus supporting coexistence. Additionally, alternative designs can result in higher stability of ecosystem functioning as species filtering due to environmental changes would not result in directional changes in (effect) trait values. Assessing the combined effects of multiple plant traits and their implications for plant functioning and functions will improve our mechanistic inferences about the functional significance of community trait patterning.


2019 ◽  
Vol 286 (1907) ◽  
pp. 20190429 ◽  
Author(s):  
Jennifer Firn ◽  
Huong Nguyen ◽  
Martin Schütz ◽  
Anita C. Risch

Plant traits are commonly used to predict ecosystem-level processes, but the validity of such predictions is dependent on the assumption that trait variability between species is greater than trait variability within a species—the robustness assumption. Here, we compare leaf trait intraspecific and interspecific variability depending on geographical differences between sites and 5 years of experimental herbivore exclusion in two vegetation types of subalpine grasslands in Switzerland. Four leaf traits were measured from eight herbaceous species common to all 18 sites. Intraspecific trait variability differed significantly depending on site and herbivory. However, the amount and structure of variability depended on the trait measured and whether considering leaf traits separately or multiple leaf traits simultaneously. Leaf phosphorus concentration showed the highest intraspecific variability, while specific leaf area showed the highest interspecific variability and displayed intraspecific variability only in response to herbivore exclusion. Species identity based on multiple traits was not predictable. We find intraspecific variability is an essential consideration when using plant functional traits as a common currency not just species mean traits. This is particularly true for leaf nutrient concentrations, which showed high intraspecific variability in response to site differences and herbivore exclusion, a finding which suggests that the robustness assumption does not always hold.


2021 ◽  
Vol 12 ◽  
Author(s):  
Evert Thomas ◽  
Merel Jansen ◽  
Fidel Chiriboga-Arroyo ◽  
Lúcia H. O. Wadt ◽  
Ronald Corvera-Gomringer ◽  
...  

Ecosystem services of Amazonian forests are disproportionally produced by a limited set of hyperdominant tree species. Yet the spatial variation in the delivery of ecosystem services by individual hyperdominant species across their distribution ranges and corresponding environmental gradients is poorly understood. Here, we use the concept of habitat quality to unravel the effect of environmental gradients on seed production and aboveground biomass (AGB) of the Brazil nut, one of Amazonia’s largest and most long-lived hyperdominants. We find that a range of climate and soil gradients create trade-offs between density and fitness of Brazil nut trees. Density responses to environmental gradients were in line with predictions under the Janzen–Connell and Herms–Mattson hypotheses, whereas tree fitness responses were in line with resource requirements of trees over their life cycle. These trade-offs resulted in divergent responses in area-based seed production and AGB. While seed production and AGB of individual trees (i.e., fitness) responded similarly to most environmental gradients, they showed opposite tendencies to tree density for almost half of the gradients. However, for gradients creating opposite fitness-density responses, area-based seed production was invariable, while trends in area-based AGB tended to mirror the response of tree density. We conclude that while the relation between environmental gradients and tree density is generally indicative of the response of AGB accumulation in a given area of forest, this is not necessarily the case for fruit production.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 265 ◽  
Author(s):  
Luca Marazzi ◽  
Evelyn Gaiser ◽  
Maarten Eppinga ◽  
Jay Sah ◽  
Lu Zhai ◽  
...  

Foundation species provide habitat to other organisms and enhance ecosystem functions, such as nutrient cycling, carbon storage and sequestration, and erosion control. We focus on freshwater wetlands because these ecosystems are often characterized by foundation species; eutrophication and other environmental changes may cause the loss of some of these species, thus severely damaging wetland ecosystems. To better understand how wetland primary producer foundation species support other species and ecosystem functions across environmental gradients, we reviewed ~150 studies in subtropical, boreal, and temperate freshwater wetlands. We look at how the relative dominance of conspicuous and well-documented species (i.e., sawgrass, benthic diatoms and cyanobacteria, Sphagnum mosses, and bald cypress) and the foundational roles they play interact with hydrology, nutrient availability, and exposure to fire and salinity in representative wetlands. Based on the evidence analyzed, we argue that the foundation species concept should be more broadly applied to include organisms that regulate ecosystems at different spatial scales, notably the microscopic benthic algae that critically support associated communities and mediate freshwater wetlands’ ecosystem functioning. We give recommendations on how further research efforts can be prioritized to best inform the conservation of foundation species and of the freshwater wetlands they support.


2021 ◽  
Vol 20 (7) ◽  
pp. 905-910
Author(s):  
Franz-Sebastian Krah ◽  
Claus Bässler

AbstractAnalyses of species functional traits are suitable to better understand the coexistence of species in a given environment. Trait information can be applied to investigate diversity patterns along environmental gradients and subsequently to predict and mitigate threats associated with climate change and land use. Species traits are used to calculate community trait means, which can be related to environmental gradients. However, while species traits can provide insights into the mechanisms underlying community assembly, they can lead to erroneous inferences if mean trait values are used. An alternative is to incorporate intraspecific trait variability (ITV) into calculating the community trait means. This approach gains increasing acceptance in plant studies. For macrofungi, functional traits have recently been applied to examine their community ecology but, to our knowledge, ITV has yet to be incorporated within the framework of community trait means. Here, we present a conceptual summary of the use of ITV to investigate the community ecology of macrofungi, including the underlying ecological theory. Inferences regarding community trait means with or without the inclusion of ITV along environmental gradients are compared. Finally, an existing study is reconsidered to highlight the variety of possible outcomes when ITV is considered. We hope this Opinion will increase awareness of the potential for within-species trait variability and its importance for statistical inferences, interpretations, and predictions of the mechanisms structuring communities of macro- and other fungi.


Flora ◽  
2021 ◽  
Vol 279 ◽  
pp. 151806
Author(s):  
Edilvane Inês Zonta ◽  
Guilherme Krahl de Vargas ◽  
João André Jarenkow

Sign in / Sign up

Export Citation Format

Share Document