Exergy Analysis of Photo-Thermal Interaction Process between Solar Radiation Energy and Solar Receiver

Author(s):  
Gang Wang ◽  
Cheng Wang ◽  
Zeshao Chen
Author(s):  
Taide Tan ◽  
Yitung Chen ◽  
Zhuoqi Chen

A solid particle solar receiver (SPSR) is a direct absorption central receiver that uses solid particles enclosed in a cavity to absorb concentrated solar radiation. However, the existing open aperture lowers the overall efficiency by convection heat transfer. Aerowindows have the potential of increasing the efficiency of an SPSR by reducing convective losses from an open receiver aperture and eliminate reflection, convection and reradiation losses from a comparable glass window. Aerodynamic windows consist of a transparent gas stream, which is injected from an air jet, across the receiver aperture to isolate its interior from the surrounding atmosphere. Even though, the wind conditions may still have important effect on the performance of SPSRs. In the present paper, the wind effect on the performance of an SPSR is investigated numerically. The mass, momentum and energy exchange between the solid particle and air flow are simulated by the two-way coupling Euler-Lagrange method in the realizable k-ε turbulence 3D model. The independence of the calculating domain is studied in order to select a proper domain for the numerical simulation. Solar ray tracing method is employed in calculating the solar radiation energy. The numerical investigation of the performance of the SPSR is focusing on optimizing the prototype design and finding out the best working condition for the SPSR. In order to investigate the influences of the wind speed and wind blowing direction on the performance of the receiver, different wind conditions of and different air jet injection conditions are simulated numerically. The cavity thermal efficiencies are calculated and the optimal injection conditions are analyzed for different wind conditions.


Author(s):  
Raffaele Capuano ◽  
Thomas Fend ◽  
Bernhard Hoffschmidt ◽  
Robert Pitz-Paal

Due to the continuous global increase in energy demand, Concentrated Solar Power (CSP) represents an excellent alternative, or add-on to existing systems for the production of energy on a large scale. In some of these systems, the Solar Power Tower plants (SPT), the conversion of solar radiation into heat occurs in certain components defined as solar receivers, placed in correspondence of the focus of the reflected sunlight. In a particular type of solar receivers, defined as volumetric, the use of porous materials is foreseen. These receivers are characterized by a porous structure called absorber. The latter, hit by the reflected solar radiation, transfers the heat to the evolving fluid, generally air subject to natural convection. The proper design of these elements is essential in order to achieve high efficiencies, making such structures extremely beneficial for the overall performances of the energy production process. In the following study, a parametric analysis and an optimized characterization of the structure have been performed with the use of self-developed numerical models. The knowledge and results gained through this study have been used to define an optimization path in order to improve the absorber microstructure, starting from the current in-house state-of-the-art technology until obtaining a new advanced geometry.


2018 ◽  
Vol 20 (5) ◽  
pp. 321-323
Author(s):  
Sh. Payziyev ◽  
Kh. Makhmudov ◽  
S. Bakhramov ◽  
A. Kasimov

On the basis of the active element of Ti3+:Al2O3, the possibility of converting solar energy into laser radiation energy is investigated. By the computer simulations, it was shown the possibility of reducing the threshold pump power by choosing the optimal geometry of the crystal parameters for end-pumping scheme of concentrated solar radiation.


2010 ◽  
Vol 18 (3) ◽  
pp. 188-195 ◽  
Author(s):  
Algimantas Sirvydas ◽  
Vidmantas Kučinskas ◽  
Paulius Kerpauskas ◽  
Jūratė Nadzeikienė ◽  
Albinas Kusta

Solar radiation energy is used by vegetation, which predetermines the existence of biosphere. The plant uses 1–2% of the absorbed radiant energy for photosynthesis. All the remaining share of the absorbed energy, accounting for 99–98%, converts into thermal energy in the plant leaf. At the lowest wind under natural surrounding air conditions, plant leaves change their position with respect to the Sun. An oscillating plant leaf receives a variable amount of solar radiation energy, which causes changes in the balance of plant leaf energies and a changing emission of heat in the leaf. The analysis of solar radiation energy pulsations in the plant leaf shows that when the leaf is in the edge positions of angles 10°, 20° and 30° with respect to the Sun, 1.5%; 6% and 13% less of radiation energy reach the leaf, respectively. During periodic motion, when the amplitude of leaf oscillation is no bigger than 10°, the plant surface receives up to 1.6% less of solar radiation energy within a certain period of time, and when the amplitude of oscillation reaches 30° up to 14% less of solar radiation energy reach the leaf surface. The total amount of radiant energy received during pulsations of solar radiation energy is not dependent on the frequency of oscillation in the same interval of time. Temperature pulsations occur in the leaf due to solar radiation energy pulsations when the plant leaf naturally changes its position with respect to the Sun. Santrauka Saules spinduliuotes energija būtina augalijai, kuri lemia biosferos egzistavima. Augalas 1–2 % absorbuotos spinduliuotes energijos sunaudoja fotosintezei, o 99–98 % absorbuotos energijos augalo lape virsta šilumine energija. Natūraliomis aplinkos salygomis esant mažiausiam vejui augalo lapu padetis Saules atžvilgiu keičiasi. Taigi augalo svyruojančio lapo gaunamas Saules spinduliuotes energijos kiekis yra kintamas, tai sukelia pokyčius augalo lapo energiju balanse ir kintama šilumos išsiskyrima lape. Analizuojant Saules spinduliuotes energijos pulsacijas augalo lape, nustatyta, kad, lapui esant kraštinese 10°, 20° ir 30° kampu padetyse Saules atžvilgiu, i ji atitinkamai patenka 1,5 %; 6 % ir 13 % mažiau spinduliuotes energijos. Augalo lapui periodiškai svyruojant, kai svyravimo amplitude yra iki 10°, per tam tikra laika i lapo paviršiu patenka iki 1,6 % mažiau Saules spinduliuotes energijos, o kai svyravimo amplitu‐de siekia iki 30°, – iki 14 % mažiau. Saules spinduliuotes energijos pulsaciju metu gautas bendras spinduliuotes energijos kiekis nepriklauso nuo to paties laiko intervalo svyravimo dažnio. Del Saules spinduliuotes energijos pulsaciju, natūraliai keičiantis augalo lapo padečiai Saules atžvilgiu, lape kyla temperatūros pulsacijos. Резюме Растения потребляют солнечную лучевую энергию, которая является основой существования биосферы. 1–2% абсорбированной лучевой энергии они используют на фотосинтез. В натуральных условиях при малейшем дуновении ветра листья растений меняют свое положение относительно Солнца. Колеблющийся лист получает переменное количество лучевой энергии, которое вызывает изменения в энергетическом балансе листа растения, что сказывается на переменном выделении тепла в листе. Анализируя пульсации солнечной лучевой энергии в листе растения, установлено, что при крайних положениях листа относительно Солнца на 10, 20 и 30 градусов на лист попадает соответственно на 1,5%, 6% и 13% меньше лучевой энергии. При периодическом колебании листа, когда амплитуда его колебания составляет 10 градусов, за известный промежуток времени солнечная лучевая энергия, попадающая на поверхность листа, уменьшается до 1,6%, а при амплитуде колебания до 30 градусов соответственно количество лучевой энергии на поверхности листа растения уменьшается до 14%. Установлено, что суммарное количество солнечной лучевой энергии во время пульсации не зависит от частоты колебания листа за одинаковый промежуток времени. Пульсации солнечной лучевой энергии при изменении положения листа растения относительно Солнца вызывают температурные пульсации в листе.


2014 ◽  
Vol 935 ◽  
pp. 97-101
Author(s):  
Zhen Zhong Guan ◽  
Chong Jie Wang ◽  
Yi Bing Xue

A solar district heating and water heating integrated system has been designed and installed in a 5000m2 residential quarter. The integrated system uses vacuum glass tube solar collector to collect solar radiation energy, and uses water as heat medium. Solar energy provides almost 50% of the total heating energy consumption in winter. The inadequate part of energy can be provided by a steam heater which steam is provided by exhaust steam of the turbine from a power station nearby. The integrated system is operating automatically according to the solar radiation and working condition. Low-temperature floor radiation system is used as indoor heat radiator. At the same time, the system can provide 24h hot water supply. The integrated system has operated for 3 years, saves a large amount of energy, and receives good profit in both economical and environment.


2014 ◽  
Vol 592-594 ◽  
pp. 2404-2408 ◽  
Author(s):  
Sunita Meena ◽  
Chandan Swaroop Meena ◽  
V.K. Bajpai

Solar energy collectors are a special kind of heat exchangers that transform solar radiation energy to internal energy of the transport medium. The major component of any solar system is the solar collector. This is a device which absorbs the incoming solar radiation, converts it into heat, and transfers this heat to a fluid (usually air, water, or oil) flowing through the collector. The measurement of the flat plate collector performance is the collector efficiency. The collector efficiency is the ratio of the useful energy gain to the incident solar energy over a particular period of time. The useful energy gain is strongly depends on the collector efficiency factor and this factor directly influenced by few parameters i.e. the centre to centre distance of absorber tubes W , thickness of absorber plate δ and heat loss coefficient UL. This paper has been focused on the relation between W with collector efficiency factor of serpentine tube solar flat-plate collector. This study shows that if we increase the W then Fˈ decreases.


Sign in / Sign up

Export Citation Format

Share Document