Performance of Solid Particle Receivers With or Without the Protection of an Aerowindow

Author(s):  
Taide Tan ◽  
Yitung Chen ◽  
Zhuoqi Chen

A solid particle solar receiver (SPSR) is a direct absorption central receiver that uses solid particles enclosed in a cavity to absorb concentrated solar radiation. However, the existing open aperture lowers the overall efficiency by convection heat transfer. Aerowindows have the potential of increasing the efficiency of an SPSR by reducing convective losses from an open receiver aperture and eliminate reflection, convection and reradiation losses from a comparable glass window. Aerodynamic windows consist of a transparent gas stream, which is injected from an air jet, across the receiver aperture to isolate its interior from the surrounding atmosphere. Even though, the wind conditions may still have important effect on the performance of SPSRs. In the present paper, the wind effect on the performance of an SPSR is investigated numerically. The mass, momentum and energy exchange between the solid particle and air flow are simulated by the two-way coupling Euler-Lagrange method in the realizable k-ε turbulence 3D model. The independence of the calculating domain is studied in order to select a proper domain for the numerical simulation. Solar ray tracing method is employed in calculating the solar radiation energy. The numerical investigation of the performance of the SPSR is focusing on optimizing the prototype design and finding out the best working condition for the SPSR. In order to investigate the influences of the wind speed and wind blowing direction on the performance of the receiver, different wind conditions of and different air jet injection conditions are simulated numerically. The cavity thermal efficiencies are calculated and the optimal injection conditions are analyzed for different wind conditions.

2006 ◽  
Vol 129 (2) ◽  
pp. 160-170 ◽  
Author(s):  
Huajun Chen ◽  
Yitung Chen ◽  
Hsuan-Tsung Hsieh ◽  
Nathan Siegel

A detailed three-dimensional computational fluid dynamics (CFD) analysis on gas-particle flow and heat transfer inside a solid-particle solar receiver, which utilizes free-falling particles for direct absorption of concentrated solar radiation, is presented. The two-way coupled Euler-Lagrange method is implemented and includes the exchange of heat and momentum between the gas phase and solid particles. A two-band discrete ordinate method is included to investigate radiation heat transfer within the particle cloud and between the cloud and the internal surfaces of the receiver. The direct illumination energy source that results from incident solar radiation was predicted by a solar load model using a solar ray-tracing algorithm. Two kinds of solid-particle receivers, each having a different exit condition for the solid particles, are modeled to evaluate the thermal performance of the receiver. Parametric studies, where the particle size and mass flow rate are varied, are made to determine the optimal operating conditions. The results also include detailed information for the gas velocity, temperature, particle solid volume fraction, particle outlet temperature, and cavity efficiency.


Author(s):  
Huajun Chen ◽  
Yitung Chen ◽  
Hsuan-Tsung Hsieh ◽  
Nathan Siegel

A detailed three dimensional computational fluid dynamics (CFD) analysis on gas-particle flow and heat transfer inside a solid particle solar receiver, which utilizes free-falling particles for direct absorption of concentrated solar radiation, is presented. The two-way coupled Euler-Lagrange method is implemented and includes the exchange of heat and momentum between the gas phase and solid particles. A two band discrete ordinate method is included to investigate radiation heat transfer within the particle cloud and between the cloud and the internal surfaces of the receiver. The direct illumination energy source that results from incident solar radiation was predicted by a solar load model using a solar ray tracing algorithm. Two kinds of solid particle receivers, each having a different exit condition for the solid particles, are modeled to evaluate the thermal performance of the receiver. Parametric studies, where the particle size and mass flow rate are varied, are made to determine the optimal operating conditions. The results also include detailed information for the particle and gas velocity, temperature, particle solid volume fraction, and cavity efficiency.


Author(s):  
Huajun Chen ◽  
Yitung Chen ◽  
Hsuan-Tsung Hsieh ◽  
Greg Kolb ◽  
Nathan Siegel

Solar thermo-chemical processes often require high temperatures that can be achieved by direct absorption of solar energy. The solid particle solar receiver can be used to heat ceramic particles that may serve as a heat transfer and storage medium or as a substrate on which chemical reaction may be performed directly. Using solid particles enclosed in a cavity to absorb concentrated solar radiation can provide efficient absorption of concentrated sunlight. In this work, different solid particle solar receiver designs have been investigated by using computation fluid dynamics (CFD) technique. The gas particle flow with the solid particle solar receiver was simulated by using two-way coupled Euler-Lagrange method. The direct illumination energy source that results from incident solar radiation was predicted by a solar load model using a solar ray tracing algorithm. The detailed information to guide the experiment, such as the particle and gas velocity, temperature, particle solid volume fraction, and cavity efficiency under different designs has been analyzed.


Author(s):  
Taide Tan ◽  
Yitung Chen

The existing open aperture of a Solid Particle Solar Receiver (SPSR) lowers the cavity efficiency by convection heat transfer. Aerowindows have the potential of increasing the efficiency of an SPSR. Aerodynamic windows consist of a transparent gas stream, which is injected from an air jet, across the receiver aperture to isolate its interior from the surrounding atmosphere. In the present paper, the influences of an aerowindow are investigated numerically on the cavity efficiency, particle exit temperature, and particle distribution of an SPSR. Different injection velocities, injection temperatures and injection directions of an air jet have been studied in order to form an efficient aerowindow. The numerical results provide a reference idea to enhance the performance in the conceptual design of an SPSR.


Author(s):  
Shuai Meng ◽  
Qian Wang ◽  
Rui Yang

The phenomenon of impaction between liquid droplets and solid particles is involved in many scientific problems and engineering applications, such as impaction between sprayed droplet and solid particles in limestone injection desulfurization system and the collision between a droplet of the liquid to be granulated and a seed particle in fluidized bed spray granulation process. There are a lot of factors affected this phenomenon: droplet and particle size, momentum of both liquid droplet and solid particles, materials, surface conditions of the solid particles and so on. However the experimental or numerical researches have been done mostly pay attention to Specific application or process, so the impaction phenomenon has not been through studied, for example how different factors affected the impaction process with its effect on different applications. This paper focuses on the basic issue of interaction between droplet and solid particles. Three main factors were considered: ratio of diameter between the droplet and solid particle, relative velocity and the surface tension (including the contact angle between droplet and solid particle). All the study is based on simulation using SPH (smoothed particle hydrodynamics) method, and the surface tension is simulated by particle-particle interaction.


1992 ◽  
Vol 114 (1) ◽  
pp. 54-64 ◽  
Author(s):  
D. P. Chase ◽  
E. F. Rybicki ◽  
J. R. Shadley

As part of a combined experimental and computational study of erosion for gas and oil production conditions, a semi-empirical model has been developed to predict erosion ratio behaviors of metals due to solid particle impingement. One use of the model will be to reduce the total number of experiments needed to characterize erosion behavior. The model represents material property information associated with both the target material and the impinging particles, as well as impingement speed. Five different models are examined in terms of ability to predict erosion ratio behavior as a function of impingement speed. The model selected is based on a conservation of energy formulation and fracture mechanics considerations to predict the amount of material removed due to solid particle impingement. The resulting equation to predict the erosion ratio for a given particle size contains one unknown coefficient which is determined through comparison with experimental data. Illustrative examples are presented for data for two different sizes of glass bead solid particles in an oil carrier fluid impinging on an API (American Petroleum Institute) N80 grade steel target at an impingement angle 90 deg to the target surface. Using erosion data at one impingement speed to determine the unknown coefficient, the model was used to predict erosion behavior at a range of other speeds. Good agreement between the erosion ratio data and the values predicted by the model were found for two solid particle sizes. Recommendations for expanding the capabilities of the model are pointed out.


Sign in / Sign up

Export Citation Format

Share Document