Microstructural stability of fine-grained fully lamellar XD TiAl alloys by step aging

2005 ◽  
Vol 36 (5) ◽  
pp. 1339-1351 ◽  
Author(s):  
Hanliang Zhu ◽  
K. Maruyama ◽  
D. Y. Seo ◽  
P. Au
2004 ◽  
Vol 842 ◽  
Author(s):  
Hanliang Zhu ◽  
Dongyi Seo ◽  
Kouichi Maruyama ◽  
Peter Au

ABSTRACTThe microstructural characteristics and creep behavior of two fine-grained XD TiAl alloys, Ti-45Al and 47Al–2Nb–2Mn+0.8vol%TiB2 (at%), were investigated. A nearly lamellar structure (NL) and two kinds of fully lamellar (FL) structures in both alloys were prepared by selected heat treatments. The results of microstructural examination and tensile creep tests indicate that the 45XD alloy with a NL structure possesses an inferior creep resistance due to its coarse lamellar spacing and larger amount of equiaxed γ grains at the grain boundaries, whereas the same alloy in a FL condition with fine lamellar spacing lowers the minimum creep rates. Contrary to 45XD, the 47XD alloy with a NL structure exhibits the best creep resistance. However, 47XD with a FL structure with finer lamellar spacing shows inferior creep resistance. On the basis of microstructural deformation characteristics, it is suggested that the well-interlocked grain boundary and relatively coarse colony size in FL and NL 47XD inhibit sliding and microstructural degradation at the grain boundaries during creep deformation, resulting in better creep resistance. Therefore, good microstructural stability is essential for improving the creep resistance of these alloys.


2007 ◽  
Vol 539-543 ◽  
pp. 1525-1530
Author(s):  
Han Liang Zhu ◽  
Dong Yi Seo ◽  
Kouichi Maruyama ◽  
Peter Au

Fine-grained fully lamellar (FGFL) structures of XD TiAl alloys (Ti-45 and 47Al-2Nb-2Mn+0.8vol.%TiB2) (at.%) were stabilized to varying degrees by different aging treatments. Specimens with and without aging were creep tested at 760°C and 207 MPa. It was found that during creep deformation, degradation of the lamellar structure involving coarsening within the colonies and spheroidization at colony boundaries occurred, forming fine globular structures at the colony boundaries and increasing the creep rate. Aging treatments stabilized the lamellar structure and retarded the coarsening and spheroidization processes during creep deformation. As a result, the aged specimens exhibited lower minimum creep rates and longer creep lives than the unaged specimens. A multiple step aging stabilized the lamellar structure to the greatest extent and suppressed other degradation processes during aging, resulting in the best creep resistance. These results demonstrate that the multiple step aging is the optimal aging condition for stabilizing FGFL XD TiAl alloys.


2005 ◽  
Vol 475-479 ◽  
pp. 581-584 ◽  
Author(s):  
H. Zhu ◽  
Dong Yi Seo ◽  
Kouichi Maruyama

The effect of heat treatment on microstructure and property of Ti-45 and 47Al-2Nb-2Mn+0.8%vol.%TiB2 alloys (45XD and 47XD) has been studied. Annealing and subsequent oil quench produced fine-grained fully lamellar structure (FGFL) in both alloys. For microstructural stabilization, the FGFL structures were subjected to different aging treatments. Microstructural examination showed that degradation of the FGFL structure, such as coarsening of γ lamellae, recrystallization of γ grains and break-up of a2 lamellae, presented to varying degrees after different aging treatments. Hardness values in the aged alloys decreased due to the degradation. The creep resistances were improved in the aged alloys though the degradation occurred, indicating that the aging treatments stabilized the FGFL structures effectively. The differences in the changes of properties caused by different aging treatments and compositions were compared in combination with the microstructural variants.


2001 ◽  
Vol 36 (9) ◽  
pp. 1737-1742 ◽  
Author(s):  
Jiancheng Tang ◽  
Baiyun Huang ◽  
Kechao Zhou ◽  
Wensheng Liu ◽  
Yuehui He ◽  
...  

10.2172/46701 ◽  
1995 ◽  
Author(s):  
J.N. Wang ◽  
A.J. Schwartz ◽  
T.G. Nieh ◽  
C.T. Liu ◽  
V.K. Sikka ◽  
...  

2008 ◽  
Vol 23 (4) ◽  
pp. 949-953 ◽  
Author(s):  
J.P. Cui ◽  
M.L. Sui ◽  
Y.Y. Cui ◽  
D.X. Li

Instead of conventional grain-refinement treatments for improving the ductility of fully lamellar TiAl alloys, multiorientational, lamellar, subcolony refinement with good ductility has been achieved simply by using an electric-current pulse treatment. The microstructural refinement mechanism is attributed to the transformation on heating of γ laths in the prior large-grain lamellar structure to Widmanstätten α in several orientations, which on subsequent cooling forms lamellar structure colonies in multiple orientations. This kind of refined multiple-colony lamellar structure was found to enhance the ductility of the TiAl alloy.


2013 ◽  
Vol 747-748 ◽  
pp. 38-43 ◽  
Author(s):  
Li Hua Chai ◽  
Liang Yang ◽  
Jian Peng Zhang ◽  
Zhi Yong Zhang ◽  
Lai Qi Zhang ◽  
...  

High Nb containing TiAl alloys have been investigated traditionally as potential high temperature structural materials because of their high strength, good oxidation and creep resistance. However, the poor ductility and fracture toughness at room temperature limit their application, which could be improved by controlling microstructure to get refine and homogeneous fully lamellar structure. In this study, a high Nb containing TiAl alloy alloying Mn, B and Y with refined microstructure was produced. The solidification path was analyzed by DSC and SEM microstructure of the alloy was observed, after heating at a certain temperature for 1-24hrs and then quenching in water. The dissolution of β phase was also investigated. The results showed that the β phase could decompose only by heating in single β or near α phase field.


Sign in / Sign up

Export Citation Format

Share Document