Influence of Step Aging on Creep Behavior and Microstructural Evolution of Fine-Grained Fully Lamellar XD TiAl Alloys

2007 ◽  
Vol 539-543 ◽  
pp. 1525-1530
Author(s):  
Han Liang Zhu ◽  
Dong Yi Seo ◽  
Kouichi Maruyama ◽  
Peter Au

Fine-grained fully lamellar (FGFL) structures of XD TiAl alloys (Ti-45 and 47Al-2Nb-2Mn+0.8vol.%TiB2) (at.%) were stabilized to varying degrees by different aging treatments. Specimens with and without aging were creep tested at 760°C and 207 MPa. It was found that during creep deformation, degradation of the lamellar structure involving coarsening within the colonies and spheroidization at colony boundaries occurred, forming fine globular structures at the colony boundaries and increasing the creep rate. Aging treatments stabilized the lamellar structure and retarded the coarsening and spheroidization processes during creep deformation. As a result, the aged specimens exhibited lower minimum creep rates and longer creep lives than the unaged specimens. A multiple step aging stabilized the lamellar structure to the greatest extent and suppressed other degradation processes during aging, resulting in the best creep resistance. These results demonstrate that the multiple step aging is the optimal aging condition for stabilizing FGFL XD TiAl alloys.

2005 ◽  
Vol 475-479 ◽  
pp. 581-584 ◽  
Author(s):  
H. Zhu ◽  
Dong Yi Seo ◽  
Kouichi Maruyama

The effect of heat treatment on microstructure and property of Ti-45 and 47Al-2Nb-2Mn+0.8%vol.%TiB2 alloys (45XD and 47XD) has been studied. Annealing and subsequent oil quench produced fine-grained fully lamellar structure (FGFL) in both alloys. For microstructural stabilization, the FGFL structures were subjected to different aging treatments. Microstructural examination showed that degradation of the FGFL structure, such as coarsening of γ lamellae, recrystallization of γ grains and break-up of a2 lamellae, presented to varying degrees after different aging treatments. Hardness values in the aged alloys decreased due to the degradation. The creep resistances were improved in the aged alloys though the degradation occurred, indicating that the aging treatments stabilized the FGFL structures effectively. The differences in the changes of properties caused by different aging treatments and compositions were compared in combination with the microstructural variants.


2005 ◽  
Vol 488-489 ◽  
pp. 749-752 ◽  
Author(s):  
Su Gui Tian ◽  
Keun Yong Sohn ◽  
Hyun Gap Cho ◽  
Kyung Hyun Kim

Creep behavior of AM50-0.4% Sb-0.9%Gd alloy has been studied at temperatures ranging from 150 to 200°C and at stresses ranging from 40 to 90 MPa. Results show that the creep rate of AM50-0.4%Sb-0.9%Gd alloy was mainly controlled by dislocation climb at low stresses under 50 MPa. The activation energy for the creep was 131.2 ± 10 kJ/mol and the stress exponent was in the range from 4 to 9 depending on the applied stress. More than one deformation-mechanism were involved during the creep of this alloy. Microstructures of the alloy consist of a–Mg matrix and fine particles, distinguished as Mg17Al12, Sb2Mg3, and Mg2Gd or Al7GdMn5 that were homogeneously distributed in the matrix of the alloy, which effectively reduced the movement of dislocations, enhancing the creep resistance. Many dislocations were identified to be present on non-basal planes after creep deformation.


2016 ◽  
Vol 853 ◽  
pp. 163-167
Author(s):  
Fa Cai Ren ◽  
Xiao Ying Tang

Creep deformation behavior of SA387Gr91Cl2 heat-resistant steel used for steam cooler has been investigated. Creep tests were carried out using flat creep specimens machined from the normalized and tempered plate at 973K with stresses of 100, 125 and 150MPa. The minimum creep rate and rupture time dependence on applied stress was analyzed. The analysis showed that the heat-resistant steel obey Monkman-Grant and modified Monkman-Grant relationships.


2008 ◽  
Vol 23 (4) ◽  
pp. 949-953 ◽  
Author(s):  
J.P. Cui ◽  
M.L. Sui ◽  
Y.Y. Cui ◽  
D.X. Li

Instead of conventional grain-refinement treatments for improving the ductility of fully lamellar TiAl alloys, multiorientational, lamellar, subcolony refinement with good ductility has been achieved simply by using an electric-current pulse treatment. The microstructural refinement mechanism is attributed to the transformation on heating of γ laths in the prior large-grain lamellar structure to Widmanstätten α in several orientations, which on subsequent cooling forms lamellar structure colonies in multiple orientations. This kind of refined multiple-colony lamellar structure was found to enhance the ductility of the TiAl alloy.


1994 ◽  
Vol 364 ◽  
Author(s):  
M. F. Bartholomeusz ◽  
J. A. Wert

AbstractEnhanced work hardening of the phases in the lamellar microstructure has been cited as an explanation for the lower minimum creep rates of a two-phase TiAl/Ti3Al lamellar alloy compared with the minimum creep rates of the individual TiAl and Ti3Al single-phase alloys tested between 980 K and 1130 K. This proposition is confirmed by TEM observations. Thermal and thermomechanical exposure result in the microstructural evolution, which increases the minimum creep rate (εmin) of the lamellar alloy. The effect of microstructural evolution on εmin will be discussed in the present paper.


2007 ◽  
Vol 539-543 ◽  
pp. 1451-1456 ◽  
Author(s):  
Z.X. Li ◽  
Xia Huang ◽  
L.C. Qi ◽  
Chun Xiao Cao

The beneficial effects of boron addition on microstructure transformations and mechanical properties of γ-TiAl alloys were investigated. Two growth mechanisms of boride (TiB2) in γ-TiAl alloy were confirmed, the curved flaky borides are products of irregular eutectic reaction growing coupled with matrix, while some faceted blocky borides in boron-rich alloy are primary TiB2 phase growing directly in melt. The core of flaky TiB2 is ultra-fine B2 phase and there has an orientation relationship [1210] TiB2//[001]B2, (1010) //(010)B2. In addition to the well-known grain refinement effect, boron addition can suppress the formation of metastable feathery and Widmastätten structure and broadens cooling-rate-range for the formation of fully lamellar structure, consequently, it improves thermal stability of the lamellar structure and accordingly prolongs the creep rupture life significantly. Another beneficial effect of boron addition is that boride can restrain discontinuous coarsening on lamellar grain boundary by pinning action and accelerates recrystallization of γ grain by introducing TiB2/matrix interfaces as nuclear sites during homogeneous treatment at 1150°C. Therefore, compared with boron-free alloy more homogeneous and refined near γ microstructure can be obtained in boron modified alloy.


2005 ◽  
Vol 36 (5) ◽  
pp. 1339-1351 ◽  
Author(s):  
Hanliang Zhu ◽  
K. Maruyama ◽  
D. Y. Seo ◽  
P. Au

2018 ◽  
Vol 144 ◽  
pp. 141-147 ◽  
Author(s):  
S.Z. Zhang ◽  
Z.W. Song ◽  
C.J. Zhang ◽  
J.C. Han ◽  
Y.B. Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document