The Creep Behaviors of Two Fine-grained XD TiAl Alloys Produced by Similar Heat Treatments

2004 ◽  
Vol 842 ◽  
Author(s):  
Hanliang Zhu ◽  
Dongyi Seo ◽  
Kouichi Maruyama ◽  
Peter Au

ABSTRACTThe microstructural characteristics and creep behavior of two fine-grained XD TiAl alloys, Ti-45Al and 47Al–2Nb–2Mn+0.8vol%TiB2 (at%), were investigated. A nearly lamellar structure (NL) and two kinds of fully lamellar (FL) structures in both alloys were prepared by selected heat treatments. The results of microstructural examination and tensile creep tests indicate that the 45XD alloy with a NL structure possesses an inferior creep resistance due to its coarse lamellar spacing and larger amount of equiaxed γ grains at the grain boundaries, whereas the same alloy in a FL condition with fine lamellar spacing lowers the minimum creep rates. Contrary to 45XD, the 47XD alloy with a NL structure exhibits the best creep resistance. However, 47XD with a FL structure with finer lamellar spacing shows inferior creep resistance. On the basis of microstructural deformation characteristics, it is suggested that the well-interlocked grain boundary and relatively coarse colony size in FL and NL 47XD inhibit sliding and microstructural degradation at the grain boundaries during creep deformation, resulting in better creep resistance. Therefore, good microstructural stability is essential for improving the creep resistance of these alloys.

2000 ◽  
Vol 646 ◽  
Author(s):  
Wolfram Schillinger ◽  
Dezhi Zhang ◽  
Gerhard Dehm ◽  
Arno Bartels ◽  
Helmut Clemens

ABSTRACTγ-T1AI (Cr, Mo, Si, B) specimens with two different fine lamellar microstructures were produced by vacuum arc melting followed by a two-stage heat treatment. The average lamellar spacing was determined to be 200 nm and 25–50 nm, respectively. Creep tests at 700°C showed a very strong primary creep for both samples. After annealing for 24 hours at 1000 °C the primary creep for both materials is significantly decreased. The steady-state creep for the specimens with the wider lamellar spacing appears to be similar to the creep behavior prior to annealing while the creep rate of the material with the previously smaller lamellar spacing is significantly higher. Optical microscopy and TEM-studies show that the microstructure of the specimens with the wider lamellar specing is nearly unchanged, whereas the previously finer material was completely recrystallized to a globular microstructure with a low creep resistance. The dissolution of the fine lamellar microstructure was also observed during creep tests at 800 °C as manifested in an acceleration of the creep rate. It is concluded that extremely fine lamellar microstructures come along with a very high dislocation density and internal stresses which causes the observed high primary creep. The microstructure has a composition far away from the thermodynamical equilibrium which leads to a dissolution of the structure even at relatively low temperatures close to the intended operating temperature of γ-T1AI structural parts. As a consequence this limits the benefit of fine lamellar microstructures on the creep behavior.


2011 ◽  
Vol 189-193 ◽  
pp. 1386-1392
Author(s):  
Yan Lou ◽  
Luo Xing Li

Microstructures and creep properties of AM80 alloy with calcium and strontium additions have been investigated by using OM, X-ray diffraction, SEM and creep tests. The results indicate that the as-cast microstructure of the AM80 alloy consists of the α-Mg matrix, bones-shaped Mg17Al12 and lamellar second precipitation phase at grain boundaries. Calcium and strontium can refine the grain size and the secondary phases. Calcium addition results in the formation of a fishbone Al2Ca eutectic phase in AM80 alloy. With the increase of calcium, reticular Al2Ca phase distribute at the grain boundaries. The creep resistance of the AM80 alloy is significantly improved by a small amount of strontium and calcium addition due to the formation of a grain boundary network consisting of the high melting point Al2Ca phase. Microstructure observations performed on the sample after creep testing reveal that the phase is distorted during creep, reflecting its formation in the as-cast microstructure is unbeneficial to creep properties of the AM80 alloy. The creep resistance of the alloy at elevated temperatures was remarkably increased when calcium was added combined with strontium. The highest creep resistance was obtained from the alloy with xSr and y3Ca addition and its steady state creep rate reached as low as 3.941×10-8s-1, one order of magnitude lower than that of alloy AM80 without strontium and calcium additions.


2017 ◽  
Vol 37 (2) ◽  
pp. 185-196 ◽  
Author(s):  
Hamid Reza Salehi ◽  
Manouchehr Salehi

Abstract In this work, the effects of nano titania are investigated on mechanical, creep, and viscoelastic behaviors of epoxy resin. For this purpose, 0.25, 0.5, and 1 vol.% of TiO2 nanoparticles were mixed with thermoset epoxy resin by mechanical and ultrasonic homogenizers and then the tensile, creep, and DMTA test samples were fabricated. The results of tensile tests show that the addition of TiO2 nanopowder slightly increased the strength and Young’s modulus of epoxy resin. However, the ultimate tensile strain or the rupture strain of nanocomposites is decreased. In addition, to understand the viscoelastic behavior of nanocomposites, the DMTA and tensile creep tests have been done. Tensile creep test has been done by DMTA and universal test machine. Both results confirmed that the creep resistance of nanocomposites has extensively improved by adding the titania nanoparticles. Variations of storage modulus, loss modulus, and tan (δ) by adding TiO2 nanopowder were examined in two modes of bending and tension. Storage and loss moduli of nanocomposite are considerably increased in all the states, but the storage modulus was more sensitive to TiO2 loading intensity. Thus, test results showed that introduction of TiO2 in the epoxy resin leads to the improvement of mechanical, creep resistance, and viscoelastic properties of nanocomposites. Due to the wide applications of epoxy resins in engineering devices, this method of reinforcement can be practical and useful to overcome some limitations of epoxy resins.


2011 ◽  
Vol 474-476 ◽  
pp. 548-552
Author(s):  
Jun Tian

Constant stress tensile creep tests were conducted on AZ91D–20 vol.%, 25 vol.%, and 30 vol.% Al2O3-SiO2short fiber composites and on an unreinforced AZ91D matrix alloy. The creep resistance of the reinforced materials is shown to be considerably improved compared with the matrix alloy. With the increasing volume fraction of short fibers, the creep resistance of AZ91D composites is improved, and their creep threshold stresses are also increased accordingly. Because of the increasing volume fraction of short fibers, loads of bearing and transmission of short fibers will increase, and thus the creep resistance of AZ91D composites further improves, but the precipitation of β-Mg17Al12precipitate increases in the number, it is easy to soften coarse, so that threshold stress of AZ91D composite does not increase greatly.


2011 ◽  
Vol 675-677 ◽  
pp. 487-490 ◽  
Author(s):  
Vit Janik ◽  
Qu Dong Wang ◽  
Dong Di Yin ◽  
Wen Jiang Ding

Alloy Mg-10Gd-3Y-0,4Zr in as-cast, as-extruded, cast-T6 (peak aged) and extruded-T5 (peak aged) state was tensile creep tested at 200, 250 and 300 °C and stress 50, 80 and 120 MPa. Comparison of minimal creep rate shows that alloy Mg-10Gd-3Y-0,4Zr in cast-T6 conditions is characterized by an excellent creep resistance, which is higher than that of commercially available Mg-alloys. Creep resistance of as-cast, as-extruded and extruded-T5 alloy Mg-10Gd-3Y-0,4Zr is lower. Cavity nucleation is heavily affected by the amount of secondary phases on the grain boundaries and also by the initial grain size of the microstructure. After extrusion and in the extruded-T5 conditions creep cavitation was not observed, whereas in the as-cast and cast-T6 conditions creep cavitation occurred on the high fraction of grain boundaries.


2002 ◽  
Vol 753 ◽  
Author(s):  
A. Bartels ◽  
S. Bystrzanowski ◽  
R. Gerling ◽  
F.-P. Schimansky ◽  
H. Kestler ◽  
...  

ABSTRACTIn this study Ti-46Al-9Nb (at%) sheet material processed by a powder metallurgical route was examined. Subsequent to hot rolling the sheets were subjected to a stress-relief treatment at 1273K for 3 hours. During this heat treatment a fine-grained near gamma microstructure has been formed. 100 hours tensile creep tests under constant load were carried out at 700°C in rolling direction, transverse direction as well as 45° direction. Using the method of load changes a stress exponent of 4.1 was determined. Furthermore, the apparent activation energy was determined in the temperature range of 715 – 775°C. Both stress exponent and activation energy suggest that diffusion assisted dislocation climb is the dominant creep mode. A comparison of these results with those of so-called conventional or so-called “2nd generation” γ-TiAl based alloys, e.g. Ti-46.5Al-4(Cr,Nb,Ta,B) (at%) and Ti-47Al-4(Cr,Mn,Nb,Si,B) (at%), indicates a significantly better creep resistance and a higher activation energy of the high Nb containing alloy. Additionally, internal friction experiments were conducted in order to analyze the deformation behavior under very small strains at elevated temperatures.


2005 ◽  
Vol 36 (5) ◽  
pp. 1339-1351 ◽  
Author(s):  
Hanliang Zhu ◽  
K. Maruyama ◽  
D. Y. Seo ◽  
P. Au

1996 ◽  
Vol 460 ◽  
Author(s):  
J. Beddoes ◽  
J. Triantafillou ◽  
L. Zhao

ABSTRACTThe creep behaviour of a binary Ti-48%A1 intermetallic is presented as a function of stress for two fully lamellar microstructures. The two lamellar conditions differ in terms of the lamellar interface spacing and grain boundary morphology. Air cooling (AC) from the single phase a region causes planar grain boundaries and lamellar spacing of 90 to 130 nm, while furnace cooling (FC) causes interlocked lamellae along grain boundaries and 350 to 550 nm lamellar spacing. Monotonie and stress increment creep tests at 760°C indicate that the AC condition exhibits a lower mimimum creep strain rate at stresses between 105 MPa and 290 MPa. The stress exponent increases from ∼ 1 at low stress to ∼ 10 at high stress. Consecutive stress reduction creep tests indicate that the internal stress required for dislocation glide is higher for the AC condition. The results suggest that at low stress the creep rate is controlled by recovery mechanisms, while at high stress the creep rate is predominantly controlled by dislocation glide. It is postulated that at high stresses the lower creep rate of the AC condition, compared to the FC condition, results from the reduced lamellar interface spacing, which increases the internal stress required for dislocation glide.


Sign in / Sign up

Export Citation Format

Share Document