Diffusion Path Theorems for Ternary Diffusion Couples

2011 ◽  
Vol 43 (10) ◽  
pp. 3462-3470 ◽  
Author(s):  
John E. Morral
10.30544/308 ◽  
2017 ◽  
Vol 23 (3) ◽  
pp. 197-211 ◽  
Author(s):  
Yuanrong Liu ◽  
Weimin Chen ◽  
Jing Zhong ◽  
Ming Chen ◽  
Lijun Zhang

The previously developed numerical inverse method was applied to determine the composition-dependent interdiffusion coefficients in single-phase finite diffusion couples. The numerical inverse method was first validated in a fictitious binary finite diffusion couple by pre-assuming four standard sets of interdiffusion coefficients. After that, the numerical inverse method was then adopted in a ternary Al-Cu-Ni finite diffusion couple. Based on the measured composition profiles, the ternary interdiffusion coefficients along the entire diffusion path of the target ternary diffusion couple were obtained by using the numerical inverse approach. The comprehensive comparisons between the computations and the experiments indicate that the numerical inverse method is also applicable to high-throughput determination of the composition-dependent interdiffusion coefficients in finite diffusion couples.


2000 ◽  
Vol 48 (2) ◽  
pp. 481-492 ◽  
Author(s):  
W.J Boettinger ◽  
S.R Coriell ◽  
C.E Campbell ◽  
G.B McFadden

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 825 ◽  
Author(s):  
Jiahong Dai ◽  
Bin Jiang ◽  
Hongmei Xie ◽  
Qingshan Yang

Interfacial reactions between Mg-40Al and Mg-30Y master alloys were investigated at intervals of 25 °C in the 350–400 °C by using a diffusion couple method. Noticeable reaction layers were formed at the interfaces of the diffusion couples. The concentration profiles of the reaction layers were characterized. The diffusion path of the diffusion couple at 400 °C is constructed on the Mg-Al-Y ternary isothermal temperature phase diagram. The phases of the reaction layer were characterized by X-ray diffraction. The interfacial reaction thermodynamics of diffusion couples were studied. These results indicate that Al2Y is the only new formed intermetallic phase in the reaction layers. The growth constants of the reaction layers were calculated. In the reaction layer II, the integrated interdiffusion coefficients of Al are higher than Y, the diffusion activation energy of Y is higher than that of Al.


2011 ◽  
Vol 685 ◽  
pp. 340-344 ◽  
Author(s):  
Tung Wai Leo Ngai ◽  
Chang Xu Hu ◽  
Wei Zheng ◽  
Heng Xie ◽  
Yuan Yuan Li

Ti, SiC and their composite materials have been widely used as high temperature structural material. The knowledge of interfacial stability between SiC and Ti is vital in high temperature applications. In this study, SiC/Ti diffusion couples were prepared to investigate the interfacial reactions between SiC and Ti at 1273 K. Phase forming sequence, microstructure and thermal stability of SiC/Ti interface were studied. It was indicated that after annealed at 1273 K for 10 days, 4 reaction layers were formed at the SiC/Ti interface. The diffusion path between SiC and Ti is SiC/Ti3SiC2/Ti5Si3/Ti5Si3+TiC/Ti3Si/Ti. As the annealing time prolong, the thicknesses of these reaction layers increased.


2010 ◽  
Vol 297-301 ◽  
pp. 1328-1333
Author(s):  
N. Garimella ◽  
H.J. Choi ◽  
Yong Ho Sohn

We developed a method of rigorous solution of the Onsager’s flow equations using moments of the interdiffusion-parameter integrands for the determination of average ternary interdiffusion coefficients. The analysis developed by Dayananda and Sohn [1] is the basis for this refined approach. Average main and cross interdiffusion coefficients are determined over selected regions in the diffusion zone using the diffusion-distance moments of the interdiffusion flux flow equations. Thermodynamic stability of solid solutions in the light of interdiffusion phenomenon is taken as validation criteria to identify accurate and reliable values of the ternary interdiffusion coefficients. Regulations are proposed for successful application of the analysis method to various ternary diffusion couples in Ni- and Fe-based intermetallics.


1988 ◽  
Vol 3 (1) ◽  
pp. 148-163 ◽  
Author(s):  
J. -C. Lin ◽  
K. -C. Hsieh ◽  
K. J. Schulz ◽  
Y. A. Chang

Reactions between Pd and GaAs have been studied using bulk-diffusion couples of Pd (∼0.6 mm thick) /GaAs and thin-film Pd (50 and 160 nm)/GaAs samples. The sequence of phase formation at 600°C between bulk Pd and GaAs was established. Initial formation of the solution phase μ and the ternary phase T does not represent the stable configuration. The stable configuration is GaAs |∊|Λ|γ|ν|Pd and is termed the diffusion path between GaAs and Pd. The sequence of phase formation for the bulk-diffusion couples is similar at 500°C. Phase formation for the thin-film Pd/GaAs specimens was studied at 180,220,250,300,350,400,450,600, and 1000°C for various annealing times. The sequence of phase formation obtained from the thin-film experiments is rationalized readily from the known ternary phase equilibria of Ga–Pd–As and the results from the bulk-diffusion couples of Pd/GaAs. The thin-film results reported in the literature are likewise rationalized. The diffusion path concept provides a useful guide in understanding the phase formation in Pd–GaAs interface or any other M-GaAs interface. This information is important in designing a uniform, stable contact for the metallization of GaAs.


2011 ◽  
Vol 312-315 ◽  
pp. 411-416
Author(s):  
J. Priimets ◽  
Ü. Ugaste

An empirical approach to the description of diffusion paths in the ternary system Fe-Co-Ni is developed. It is shown that the experimentally determined diffusion path in this system can be described by the universal function, which contains two parameters, extracted from experimental data. The values of these parameters and their possible dependence on initial compositions of diffusion couples are discussed. Using the universal function, typical diffusion paths for the system Fe-Co-Ni have been calculated. It is shown that the calculated diffusion paths are in a qualitatively good agreement with the available experimental data.


2011 ◽  
Vol 409 ◽  
pp. 387-392 ◽  
Author(s):  
Yi Nan Zhang ◽  
Dmytro Kevorkov ◽  
Florent Bridier ◽  
Mamoun Medraj

In the present research, seven multi-phase diffusion couples, with terminal alloys having different microstructural features, were prepared and annealed for 4 weeks at 335°C. The phase relations and change of morphological characteristics of each phase were studied along the diffusion zone by means of scanning electron microscopy/energy dispersive X-ray spectroscopy and quantitative electron probe microanalysis. Depending on the different terminal compositions of the diffusion couples, the morphological evolution in the diffusion zone can be: tooth-like, matrix phase with isolated and/or dendritic precipitates. Electron back-scattered diffraction analysis was carried out to investigate the crystal orientation of the ternary compounds and the crystal orientation relations at the interface of the diffusion zones.


Sign in / Sign up

Export Citation Format

Share Document