Diffusion Paths in the Ternarysystem Fe-Co-Ni: An Empirical Approach

2011 ◽  
Vol 312-315 ◽  
pp. 411-416
Author(s):  
J. Priimets ◽  
Ü. Ugaste

An empirical approach to the description of diffusion paths in the ternary system Fe-Co-Ni is developed. It is shown that the experimentally determined diffusion path in this system can be described by the universal function, which contains two parameters, extracted from experimental data. The values of these parameters and their possible dependence on initial compositions of diffusion couples are discussed. Using the universal function, typical diffusion paths for the system Fe-Co-Ni have been calculated. It is shown that the calculated diffusion paths are in a qualitatively good agreement with the available experimental data.

2011 ◽  
Vol 314-316 ◽  
pp. 1262-1267 ◽  
Author(s):  
Xue Hui An ◽  
Qian Li ◽  
Jie Yu Zhang

The isothermal section at 573 K of the Ni-Cu-La system was experimentally validated as well as the Mg-La-Cu system was thermodynamically evaluated. Four sample alloys in the Ni-Cu-La system were prepared and analyzed by ICP, XRD and BSE/EDS. All the experimental results were compared favorably with the calculated phase relationships. For the Mg-La-Cu ternary system, the isothermal section at 673 K was assessed on the basis of the available results in literatures, which showed a good agreement with the experimental data. Based on the thermodynamic models and parameters of the six binaries and four ternaries, the Mg-Ni-La-Cu system was finally modeled. The non-equilibrium solidification path La0.7Mg0.3Ni2.8-xCux (x=0-0.4) and the vertical section of LaNi5-Mg2Cu were calculated and analyzed from the viewpoint of hydrogen storage alloys design.


2018 ◽  
Vol 4 (3) ◽  
pp. 287
Author(s):  
Heru Setyawan

Bipolar diffusion charging of aerosol particles has been studied theoretically using Fuchs theory. Experimental data measured by several researchers available in the published literature were used to verify the calculation results. The calculation results show that Fuchs theory has been successfully used to predict the experimental data of the charging probability of submicron aerosol particles. The combination probability of ion-particle increases with the increase of particle size, both for particle and ion with the same sign and those with the opposite sign. However the combination probability is larger if the charges of particle and ion are of the opposite sign. Generally, Fuchs theory is not too easy to deal with due to the ill-defined of all parameters used, namely ion mass and ion mobility. These cause many possibilities of parameter combination that can give a good agreement with experimental data. Thus, in order to interpret the experimental results properly, the two parameters should be measured simultaneously with aerosol measurements.Keywords: Aerosol, Bipolar Charging, Combination ProbabilityAbstrakPemuatan listrik difusi bipolar partikel aerosol telah dipelajari secara teoritis menggunakan teori Fuchs. Sebagai verifikasi digunakan data eksperimen beberapa peneliti yang tersedia dalam literatur yang telah dipublikasikan. Hasil perhitungan menunjukkan bahwa teori Fuchs berhasil memprediksi dengan baik data eksperimen probabilitas pemuatan listrik partikel aerosol dalam rentang ukuran partikel berukuran submikron. Probabilitas penggabungan ion-partikel semakin besar dengan semakin besarnya ukuran partikel, baik untuk partikel dan ion yang memiliki tanda yang berlawanan maupun yang memiliki tanda yang sama. Akan tetapi, probabilitas penggabungan untuk partikel dan ion yang memiliki tanda yang berlawanan memiliki nilai yang lebih besar. Pada umumnya teori Fuchs tidak terlalu mudah untuk digunakan yang disebabkan oleh tidak terdefinisikannya dengan baik semua parameter yang digunakan, yaitu  massa ion dan mobilitas ion. Hal ini mengakibatkan banyak kemungkinan kombinasi parameter yang bisa menghasilkan kesesuaian yang bagus dengan data hasil pengukuran. Jadi, agar dapat menginterpretasikan hasil pengukuran dengan tepat, kedua besaran tersebut harus diukur secara serempak denganpengukuran aerosol.Kata Kunci: Aerosol, Pemuatan Listrik Bipolar, Probabilitas Penggabungan


2012 ◽  
Vol 57 (8) ◽  
pp. 834
Author(s):  
M. Tahiri ◽  
N. Masaif ◽  
A. Jennane ◽  
E.M. Lotfi

The results of experimental and analytical studies of the electrical conductivity for different solid solutions synthesized in a vicinity of LiTaO3 in the ternary system Li2O–Ta2O5–(WO3)2 are presented. It is shown that the electrical conductivity increases linearly with the Curie temperature. The experimental conductivity between 200 and 700 ºC was measured using an LCR bridge HP4192A on ceramics sintered at 1250 ºC. Within the theoretical approach to the defect structure analysis combined with our proposed vacancy models, the theoretical results are in a good agreement with the experimental data.


2007 ◽  
Vol 266 ◽  
pp. 83-99 ◽  
Author(s):  
Kevin M. Day ◽  
Mysore A. Dayananda

Selected diffusion couples investigated in the Cu-based and Fe-based multicomponent systems are examined for diffusion path development, zero-flux planes, uphill diffusion, and internal constraints for diffusion paths. The couples are analyzed for interdiffusion fluxes and interdiffusion coefficients with the aid of the “MultiDiFlux” program. Eigenvalues and eigenvectors are also determined from the interdiffusion coefficients determined over various ranges of composition in the diffusion zone. Slopes of diffusion paths at selected sections, including the path ends, are related to interdiffusion coefficients, interdiffusion fluxes and/or eigenvectors. These relations are explored with selected single phase diffusion couples in the Cu-Ni-Zn and Fe-Ni-Al systems and the calculated path slopes are compared with those directly determined from the concentration profiles. Relations between the gradient of interdiffusion flux and the concentration gradient are examined for each component in a two-phase Cu-Ni-Zn diffusion couple. The research is supported by the National Science Foundation.


2018 ◽  
Vol 33 (21) ◽  
pp. 1850120
Author(s):  
A. Avar ◽  
H. Hassanabadi ◽  
S. Hassanabadi

Our purpose in this paper is to modify the original proximity potential by universal function available in the literature. A potential model with Yukawa proximity potential has been considered according to the modified model fusion reactions of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] which have been discussed in detail. The results have a good agreement with the experimental data.


2012 ◽  
Vol 326-328 ◽  
pp. 209-214
Author(s):  
J. Priimets ◽  
Ü. Ugaste

Possible interrelations between diffusion paths and interdiffusion coefficients in the system Fe-Co-Ni are analyzed. It is found that the apparition of a straight line shape of diffusion paths imposes strong demands on the values of the conventional interdiffusion coefficients calculated from the experimental data. The possible consequences of this finding are discussed.


2019 ◽  
Vol 55 (3) ◽  
pp. 439-449 ◽  
Author(s):  
T. Cheng ◽  
L.-J. Zhang

In this paper, a thermodynamic re-assessment of the Al-Sn-Zn ternary system was performed by means of the CALculation of PHAse Diagram (CALPHAD) approach. The thermodynamic descriptions of the binary Al-Sn, Al-Zn, and Sn-Zn systems from the literature were directly adopted, and the newly reported experimental phase equilibria, enthalpies of mixing, and activities of Al in the ternary liquid phase were taken into account. A set of self-consistent thermodynamic parameters for the ternary Al-Sn-Zn system were finally obtained. A comprehensive comparison between the presently calculated phase equilibria/thermodynamic properties and the experimental data indicates that the present thermodynamic descriptions of the ternary Al-Sn-Zn system show very good agreement with most of the experimental data. The further direct comparison with the calculated results due to the previous assessment demonstrates that a significant improvement was achieved by the present assessment though fewer ternary interaction parameters were utilized.


2016 ◽  
Vol 52 (1) ◽  
pp. 113-118 ◽  
Author(s):  
V.D. Gandova

An investigation of Ni-Bi-Zn system was performed using a diffusion couples technique and the diffusion paths were constructed. For that purpose diffusion couples consisting of solid Ni and liquid Bi-Zn phase were annealed at 450?C. The phase and chemical compositions of the contact zone were determined by scanning electron microscope. The diffusion layers found in the Ni-Bi-Zn ternary system were Beta1, ?-Ni5Zn21 and liquid. No intermetallic compounds in Bi-Ni binary phase diagram were observed.


2005 ◽  
Vol 237-240 ◽  
pp. 1264-1269 ◽  
Author(s):  
J. Priimets ◽  
A. Ainsaar ◽  
Ü. Ugaste

The peculiarities of practical application of effective interdiffusion coefficients of components for calculating diffusion paths in ternary systems are analysed. It is shown that infinite values of the interdiffusion coefficients at zero concentration gradient’s points do not remarkably affect the accuracy of calculation in the case of a correct choice of variables. At zero-flux planes where the respective effective interdiffusion coefficient is equal to zero, no calculation problems arise, as evidently zero-flux planes can occur simultaneously only for one of the components. The results of calculation of diffusion paths for diffusion couples in the ternary systems Cu-Fe-Ni and Co-Fe-Ni using respective effective interdiffusion coefficients are presented. These results demonstrate a good accuracy of such kind of calculations even in the case of very strong deviation from linearity of the diffusion path.


2020 ◽  
pp. 149-152

The energy states for the J , b , ɤ bands and electromagnetic transitions B (E2) values for even – even molybdenum 90 – 94 Mo nuclei are calculated in the present work of "the interacting boson model (IBM-1)" . The parameters of the equation of IBM-1 Hamiltonian are determined which yield the best excellent suit the experimental energy states . The positive parity of energy states are obtained by using IBS1. for program for even 90 – 94 Mo isotopes with bosons number 5 , 4 and 5 respectively. The" reduced transition probability B(E2)" of these neuclei are calculated and compared with the experimental data . The ratio of the excitation energies of the 41+ to 21+ states ( R4/2) are also calculated . The calculated and experimental (R4/2) values showed that the 90 – 94 Mo nuclei have the vibrational dynamical symmetry U(5). Good agreement was found from comparison between the calculated energy states and electric quadruple probabilities B(E2) transition of the 90–94Mo isotopes with the experimental data .


Sign in / Sign up

Export Citation Format

Share Document