Microstructure, Hardness, and Residual Stress Distributions in T-Joint Weld of HSLA S500MC Steel

2017 ◽  
Vol 48 (3) ◽  
pp. 1103-1110 ◽  
Author(s):  
Intissar Frih ◽  
Guillaume Montay ◽  
Pierre-Antoine Adragna
2016 ◽  
Vol 49 (1) ◽  
pp. 182-187 ◽  
Author(s):  
J. Todt ◽  
H. Hammer ◽  
B. Sartory ◽  
M. Burghammer ◽  
J. Kraft ◽  
...  

Synchrotron X-ray nanodiffraction is used to analyse residual stress distributions in a 200 nm-thick W film deposited on the scalloped inner wall of a through-silicon via. The diffraction data are evaluated using a novel dedicated methodology which allows the quantification of axial and tangential stress components under the condition that radial stresses are negligible. The results reveal oscillatory axial stresses in the range of ∼445–885 MPa, with a distribution that correlates well with the scallop wavelength and morphology, as well as nearly constant tangential stresses of ∼800 MPa. The discrepancy with larger stress values obtained from a finite-element model, as well as from a blanket W film, is attributed to the morphology and microstructural nature of the W film in the via.


2006 ◽  
Vol 129 (3) ◽  
pp. 345-354 ◽  
Author(s):  
P. Dong

In this paper, some of the important controlling parameters governing weld residual stress distributions are presented for girth welds in pipe and vessel components, based on a large number of residual stress solutions available to date. The focus is placed upon the understanding of some of the overall characteristics in through-wall residual stress distributions and their generalization for vessel and pipe girth welds. In doing so, a unified framework for prescribing residual stress distributions is outlined for fitness-for-service assessment of vessel and pipe girth welds. The effects of various joint geometry and welding procedure parameters on through thickness residual stress distributions are also demonstrated in the order of their relative importance.


2016 ◽  
Vol 725 ◽  
pp. 647-652 ◽  
Author(s):  
Yusuke Yanagisawa ◽  
Yasuhiro Kishi ◽  
Katsuhiko Sasaki

The residual stress distributions of the forgings after both water-cooling and air-cooling were measured experimentally. The residual stress occurring during the heat-treatment was also simulated considering the phase transformation and the transformation plasticity. A comparison of the experiments with the simulations showed a good agreement. These results shows that the transformation plastic strain plays an important role in the heat treatment of large forged shafts.


Author(s):  
Jeffrey D. Cochran ◽  
Trace P. Silfies ◽  
Jonathan D. Dobis

The manufacture of low density polyethylene (LDPE) by radical polymerization regularly subjects components to extreme pressures exceeding 20 ksi and, possibly, to runaway decomposition reactions with temperatures exceeding 1500 °F and pressures above 30 ksi. Components subject to such extreme conditions are often autofrettaged to induce a beneficial residual stress distribution that retards crack growth and extends fatigue life. Three samples of autofrettaged tubes extracted from these components are examined here. Only one of these samples is known to have been exposed to multiple decompositions while in service. Measurements of the remaining residual stress were taken for each of these tube samples, and a number of other metallurgical tests were performed. The results show that the tube experiencing decompositions lost almost all of the beneficial residual stress induced by autofrettage and actually has a large, detrimental tensile stress at the inner surface. Corresponding to this is a band of embrittled material with a significantly altered microstructure that was most likely caused by thermal excursions. The tubes that experienced no decompositions showed no such alterations, and their residual stress distributions were relatively intact. An FFS assessment of crack-like flaws was performed on these tubes in accordance with API 579-1/ASME FFS-1 in order to determine the effect of this loss of residual stress on remaining life and quantify this loss in terms of a damage parameter.


2010 ◽  
Vol 23 (3) ◽  
pp. 263-273 ◽  
Author(s):  
Sara Y. Kenno ◽  
Sreekanta Das ◽  
John B. Kennedy ◽  
Ronald B. Rogge ◽  
Michael Gharghouri

Sign in / Sign up

Export Citation Format

Share Document