Directional Solidification of a Nickel-Based Superalloy Product Structure Fabricated on Stainless Steel Substrate by Electron Beam Additive Manufacturing

Author(s):  
S. V. Fortuna ◽  
D. A. Gurianov ◽  
K. N. Kalashnikov ◽  
A. V. Chumaevskii ◽  
Yu. P. Mironov ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6948
Author(s):  
Andrey Filippov ◽  
Nikolay Shamarin ◽  
Evgeny Moskvichev ◽  
Nikolai Savchenko ◽  
Evgeny Kolubaev ◽  
...  

Electron beam additive wire-feed deposition of Cu-7.5wt.%Al bronze on a stainless-steel substrate has been carried out at heat input levels 0.21, 0.255, and 0.3 kJ/mm. The microstructures formed at 0.21 kJ/mm were characterized by the presence of both zigzagged columnar and small equiaxed grains with 10% of Σ3 annealing twin grain boundaries. No equiaxed grains were found in samples obtained at 0.255 and 0.3 kJ/mm. The zigzagged columnar ones were only retained in samples obtained at 0.255 kJ/mm. The fraction of Σ3 boundaries reduced at higher heat input values to 7 and 4%, respectively. The maximum tensile strength was achieved on samples obtained with 0.21 kJ/mm as tested with a tensile axis perpendicular to the deposited wall’s height. More than 100% elongation-to-fracture was achieved when testing the samples obtained at 0.3 kJ/mm (as tested with a tensile axis coinciding with the wall’s height).


2013 ◽  
Vol 133 (4) ◽  
pp. 126-127 ◽  
Author(s):  
Shota Hosokawa ◽  
Motoaki Hara ◽  
Hiroyuki Oguchi ◽  
Hiroki Kuwano

2020 ◽  
Vol 32 (4) ◽  
pp. 042015
Author(s):  
Alireza Mostajeran ◽  
Reza Shoja-Razavi ◽  
Morteza Hadi ◽  
Mohammad Erfanmanesh ◽  
Hadi Karimi

Author(s):  
Dipti Samantaray ◽  
Bommakanti Aashranth ◽  
Neelakandapillai Lekshmanan Parthasarathi ◽  
Arun Kumar Rai ◽  
Marimuthu Arvinth Davinci ◽  
...  

2012 ◽  
Vol 490-495 ◽  
pp. 3486-3490
Author(s):  
Qiang Yu ◽  
Zhen Chen ◽  
Zhong Cheng Guo

In order to prepare a new type of anode material, stainless steel was selected as substrate material. The β-PbO2 coating on stainless steel substrate was prepared under the appropriate plating solution, and the PbO2-MnO2 coating was prepared with thermal decomposition. The crystal structure was determined by X-ray diffraction; Surface morphology was test by Scanning Electron Microscopy; the energy spectrum was used to determine element mass-fraction and the ratio of atomic number of the coatings.


Ionics ◽  
2010 ◽  
Vol 17 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Rajeev Joshi ◽  
Ratikant Mishra ◽  
C. A. Betty ◽  
Shilpa Sawant ◽  
S. H. Pawar

Sign in / Sign up

Export Citation Format

Share Document