scholarly journals The Influences of Grain Refiner, Inclusion Level, and Filter Grade on the Filtration Performance of Aluminum Melt

Author(s):  
Jiawei Yang ◽  
Sarina Bao ◽  
Shahid Akhtar ◽  
Ulf Tundal ◽  
Stig Tjøtta ◽  
...  

AbstractThe addition of grain refiner particles in the aluminum melt is known to reduce the filtration efficiency of ceramic foam filter (CFF). In the present work, a systematic study on the influence of the addition level of Al-Ti-B master alloys and the inclusion level on the filtration performance of aluminum melt has been investigated by pilot-scale filtration tests using 50 PPi and 80 PPi filters. The inclusion level of the melt has been measured using both LiMCA and PoDFA. For 80 PPi CFF, the N20 inclusion (diameter larger than 20 μm) value in the post-filtrated melt does not increase when an ultra-high level of inclusions is introduced in the form of chips. For the melts with a low level of grain refiners (~ 0.5 kg/ton), the filtration performance of CFF is not affected by grain refiners, regardless of inclusion load. An addition of 2.0 kg/ton grain refiners reduces the filtration performance for melts with a high inclusion level, where post-filtration inclusions with the size of 15-20 µm were significantly increased. It is found, however, for the melts with an ultra-high inclusion load, the filtration performance of 80 PPi CFF is not affected by the grain refiner addition up to 2.0 kg/ton. The interactions between inclusions and grain refiner particles and the filtration mechanism have been studied by characterizing the spent filter and measuring the pressure drop during the filtration process. It is revealed that the strong adherence between oxide film with grain refiner particles dominates the grain refiner influence on the filtration performance of CFF. During the filtration process, oxide films have strong influences on the capturing of other inclusions such as oxide particles and TiB2 particles by the filter. A mechanism based on the interactions between oxide films and grain refiner particles is proposed to explain the CFF performance under the influence of grain refiner.

Author(s):  
Jiawei Yang ◽  
Yijiang Xu ◽  
Sarina Bao ◽  
Shahid Akhtar ◽  
Ulf Tundal ◽  
...  

AbstractIt is well known that the filtration efficiency of ceramic foam filters (CFF) on aluminum melt can be significantly reduced by the addition of grain refiner particles under a high inclusion load. Also, it is usually considered that the filtration process has little impact on grain refinement efficiency. In this work, the influence of inclusions and filtration on the grain refinement effect of AA 6060 alloy has been studied. This was done through TP-1 type solidification experiments where the aluminum melt prior to and after the filter during a pilot-scale filtration test was investigated. In the experiments, 80 PPi CFFs were used to filtrate aluminum melt with an ultra-high inclusion load and two addition levels of Al–3Ti–1B master alloys. It is found that both inclusions and filtration significantly reduce the grain refinement efficiency of the grain refiner master alloys. A detailed characterization of the used filters shows that the reduction of grain refinement efficiency is due to the strong adherence of TiB2 particles to the oxide films, which are blocked by the CFF during filtration. A grain size prediction model based on deterministic nucleation mechanisms and dendritic growth kinetics has been applied to calculate the solidification grain size and estimate the loss of effective grain refiner particles during filtration. It is shown that due to the strong adherence between TiB2 particles and oxide films in the melt, the high addition level of aluminum chips also has an influence on reducing the grain refinement efficiency of aluminum melt without filtration. The results of this study extended our understanding of the behavior and performance of inoculant particles in CFF and their interactions with the inclusions.


Author(s):  
Jiawei Yang ◽  
Sarina Bao ◽  
Shahid Akhtar ◽  
Ping Shen ◽  
Yanjun Li

AbstractIt is well known that grain refiner additions in aluminum melts significantly reduce the filtration efficiency of ceramic foam filters (CFF). However, the mechanism remains unclear. In this work, the influence of grain refiners on the wettability of alumina substrate by aluminum melt was studied by both conventional sessile drop and improved sessile drop methods at different temperatures and vacuums. Commercial purity aluminum (CP-Al) and grain refiner master alloys Al-3Ti-1B, Al-5Ti-1B, Al-3Ti-0.15C were used. It is found that master alloy melts wet alumina substrate better than CP-Al. Generally, a lower temperature or lower vacuum results in a higher contact angle. The roles of grain refiner particles in improving the wettability were studied by analyzing the solidification structure of post wetting-test droplets using SEM. Strong sedimentation of grain refiner particles at the metal-substrate interface was observed, which is attributed to the higher density of grain refiner particles compared to the Al melt. Meanwhile, a large fraction of grain refiner particles agglomerates at the oxide skin of the aluminum droplets, showing a strong adhesion between the particles and oxide skin. Such adhering of grain refiner particles is proposed to enhance the rupture of the original oxide skin of the droplets and slow down the reoxidation process at the surface layer. Both adherence of grain refiner particles to surface oxide skin and sedimentation of particles at the metal-substrate interface are responsible for the wetting improvement.


Author(s):  
Jiawei Yang ◽  
Sarina Bao ◽  
Shahid Akhtar ◽  
Yanjun Li

AbstractIn this work, a systematic study on the interactions between aluminum oxide films and TiB2 grain refiner particles and their effect on grain refinement behavior have been conducted. Oxide films were introduced into a commercial purity aluminum melt by adding AA 6061 alloy chips while the grain refiner particles were introduced by adding Al-3T-1B master alloy. Strong sedimentation of TiB2 grain refiner particles was observed in aluminum melt without chip addition during long-time settling. Most of the TiB2 particles were settled and accumulated at the bottom of crucible. In contrast, the sedimentation of TiB2 particles is much less in the melt with the addition of oxide films. A large fraction of TiB2 particles were found to be adhered to the oxide films located at the top part of the crucible, which inhibited the sedimentation of grain refiner particles. TP-1 type tests were also done to study the grain refinement efficiency of Al-3Ti-1B master alloy under different melt cleanliness and settling time. It is found that sedimentation of TiB2 particles greatly reduces the grain refinement efficiency. The introduction of oxide films seems to slightly alleviate the fading effect. This is owing to the strong adherence between the oxide films and TiB2 particles, which leads to a retardation of particle sedimentation.


2020 ◽  
Vol 51 (5) ◽  
pp. 2371-2380 ◽  
Author(s):  
Claudia Voigt ◽  
Beate Fankhänel ◽  
Björn Dietrich ◽  
Enrico Storti ◽  
Mark Badowski ◽  
...  

Abstract In industrial applications, filter materials are often chosen according to cost as well as their processing and thermomechanical properties, but rarely in terms of their behavior during filtration, which is largely due to there being insufficient information available on the influence of filter materials and surface quality on filtration behavior. In this study, the manufacture of functionalized Al2O3 nanofilters was investigated, along with their filtration performance in short- and long-term filtration trials. In addition, sessile drop tests were performed to measure the contact angle of the nanofunctionalized materials, and yielded an approximately 10 deg (11 pct) higher contact angle for nanocoated materials sintered at 800 °C and 1250 °C than for those sintered at 1600 °C and an approximately 23 deg (23 pct) higher contact angle compared to surfaces without a nanocoating. The filtration mechanism was assessed by means of Porous Disk Filtration Analysis (PoDFA) and Liquid Metal Cleanliness Analyzer (LiMCA) monitoring systems, as well as by analysis of the used and infiltrated filters using Scanning Electron Microscopy and Energy Dispersive X-ray analysis (SEM/EDX) technology. Both short-term and long-term filtration trials showed that the filtration behaviors of the reference and nanocoated filters were comparable. It was therefore determined that nanocoating of such filters with Al2O3 does not provide any improvement with regard to filtration performance.


2016 ◽  
Vol 285 ◽  
pp. 83-91 ◽  
Author(s):  
Fernando Almenglo ◽  
Martín Ramírez ◽  
José Manuel Gómez ◽  
Domingo Cantero

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1528
Author(s):  
Mateusz Szul ◽  
Tomasz Iluk ◽  
Aleksander Sobolewski

In this research, the idea of multicomponent, one-vessel cleaning of syngas through simultaneous dedusting and adsorption is described. Data presented were obtained with the use of a pilot-scale 60 kWth fixed-bed GazEla reactor, coupled with a dry gas cleaning unit where mineral sorbents are injected into raw syngas at 500–650 °C, before dedusting at ceramic filters. The research primarily presents results of the application of four calcined sorbents, i.e., chalk (CaO), dolomite (MgO–CaO), halloysite (AlO–MgO–FeO), and kaolinite (AlO–MgO) for high-temperature (HT) adsorption of impurities contained in syngas from gasification of biomass. An emphasis on data regarding the stability of the filtration process is provided since the addition of coating and co-filtering materials is often necessary for keeping the filtration of syngas stable, in industrial applications.


2009 ◽  
Vol 630 ◽  
pp. 9-16
Author(s):  
Trond Furu ◽  
Idar Kjetil Steen

Since October 2006 the Hydro Casthouse Reference Centre has been operating. The centre is a full scale state of the art pilot casting centre for extrusion ingot, sheet ingot and foundry alloys, consisting of a 17Mtons furnace with a metal loop, a launder system including modular in-line melt treatment units such as ceramic foam filters (CFF) and inline melt refining units (Hycast SIR) and a casting pit with the possibility to cast full size geometries and a casting length of 5.5m. A two strand horizontal casting machine further adds the possibility of continuous casting of extrusion ingot and foundry alloy ingot. The centre has a state of the art superior control system (SCS) and a lay-out, including control room facilities, well suited for training and demonstration purposes. In addition the centre has access to state of the art software codes for simulating the casting process (Alsim) and the as cast microstructure (Alstruc). The present paper gives some examples on how the centre is operating and the support that is offered to casthouses in Hydro. This includes (i) simulation of the casting processes (hot tearing and as cast structures) applying the Alsim and Alstruc codes, (ii) pilot scale testing of casting and melt treatment equipment, (iii) testing of new parameters and procedures for melt treatment and casting (iv) production of trial orders of new alloys and (v) practical training of casthouse operators (basic for molten metal handling, emergency situations and response, casting principles and trouble shooting, etc.).


Author(s):  
Sung-joon Kim

The aim of this study is to evaluate the optimal conditions of membrane filtration process. Both laboratory test and pilot-scale test were conducted to examine a treated water on blending water. The water sample were prepared by blending a raw water and the effluent water filtered through an organic membrane. The optimal efficiency in the treatment of water quality at the lab-scale test was generated under conditions of flux at 2.0 m3/m2∙day, the blending ratio of 4:1, and the optimal dosage of coagulant at 20 ppm. The pilot-scale test resulted in that the optimal efficiency was obtained under conditions of flux at 2.0 m3/m2∙day and the blending ratio of 6.0:1. However, the different results between lab-scale and pilot-scale tests on the optimal dosage of coagulant implied that it is difficult to achieve the stable condition of process operation at the low level of coagulant. In summary, the results indicated that, in the combination process of organic membrane and ceramic membrane, the recovery efficiency was achieved above the level of 98.4 %. Compared to 92.1 % in a single organic membrane process, the combination process is 6.3 % more efficient than the single one. This combination process of water treatment lead to stable recovery rates by the optimal input of dosage, less pollution load to water, and a stabilized filtration system.


Sign in / Sign up

Export Citation Format

Share Document