Mathematical modeling of the reduction process of iron ore particles in two stages of twin-fluidized beds connected in series

1998 ◽  
Vol 29 (5) ◽  
pp. 1107-1115 ◽  
Author(s):  
Y. B. Hahn ◽  
K. S. Chang
1992 ◽  
Vol 25 (4-5) ◽  
pp. 161-168 ◽  
Author(s):  
J. Einfeldt

A process, called Bio-Denipho, for combined biological phosphorus and nitrogen removal in a combination of an anaerobic tank and two oxidation ditches is described. In this process the anaerobic tank consisting of three sections working in series is followed by two oxidation ditches. These too are working in series, but with both inlet to and outlet from the tanks changing in a cycle. The Bio-Denipho process is described specifically for the process itself and as a case study for the implementation of the process on a 265,000 pe wastewater treatment plant for the city of Aalborg in Denmark. The plant was designed and erected in two stages and the last stage was inaugurated October 31,1989. Lay-out and functions for the plant is described and design loads, plan lay-out and tank volumes are given in this paper together with performance data for the first year in operation.


2013 ◽  
Vol 701 ◽  
pp. 28-31 ◽  
Author(s):  
Rusila Zamani Abd Rashid ◽  
Hadi Purwanto ◽  
Hamzah Mohd Salleh ◽  
Mohd Hanafi Ani ◽  
Nurul Azhani Yunus ◽  
...  

This paper pertains to the reduction process of local low grade iron ore using palm kernel shell (PKS). It is well known that low grade iron ores contain high amount of gangue minerals and combined water. Biomass waste (aka agro-residues) from the palm oil industry is an attractive alternative fuel to replace coal as the source of energy in mineral processing, including for the treatment and processing of low grade iron ores. Both iron ore and PKS were mixed with minute addition of distilled water and then fabricated with average spherical diameter of 10-12mm. The green composite pellets were subjected to reduction test using an electric tube furnace. The rate of reduction increased as temperature increases up to 900 °C. The Fe content in the original ore increased almost 12% when 40 mass% of PKS was used. The reduction of 60:40 mass ratios of iron ore to PKS composite pellet produced almost 11.97 mass% of solid carbon which was dispersed uniformly on the surface of iron oxide. The aim of this work is to study carbon deposition of PKS in iron ore through reduction process. Utilization of carbon deposited in low grade iron ore is an interesting method for iron making process as this solid carbon can act as energy source in the reduction process.


2016 ◽  
Vol 55 (3) ◽  
pp. 345-355 ◽  
Author(s):  
T. Jiang ◽  
L. Yang ◽  
G. Li ◽  
J. Luo ◽  
J. Zeng ◽  
...  

2007 ◽  
Vol 47 (3-4) ◽  
pp. 373-379 ◽  
Author(s):  
Eugene Donskoi ◽  
James R. Manuel ◽  
John M. F. Clout ◽  
Yimin Zhang

Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 923 ◽  
Author(s):  
Yongsheng Sun ◽  
Wentao Zhou ◽  
Yuexin Han ◽  
Yanjun Li

In the coal-based reduction of high phosphorus oolitic hematite, it is particularly important to study the mechanism of phosphorus regulation during the formation of iron metals for the efficient development and utilization of iron ore. In this study, the thermodynamics of the coal-based reduction process of fluorapatite in different mineral systems, effect mechanism of the reduction degree, kinetics, mineral composition, and morphology of structural evolution samples were systematically investigated using FactSage software, single factor analysis, the isothermal method, X-ray diffraction (XRD), scanning electron microscope (SEM), and an energy dispersive spectrometer (EDS). Thermodynamic analysis indicates that the effect of the SiO2–Fe2O3–C system on reducing the initial reduction temperature of fluorapatite was stronger than that of the Al2O3–Fe2O3–C system. The effect mechanism of the reduction degree demonstrates that increasing the dosage of silica, iron oxide, carbon, reduction time, and reduction temperature could promote the reduction reaction of fluorapatite under certain conditions. Dynamics analysis shows that the best kinetic mechanism functions of the SiO2–Fe2O3–C system and the Al2O3–Fe2O3–C system were A1/3 = 1/3(1 − α)[−ln(1 − α)]−2 and A1/2 = 1/2(1 − α)[−ln(1 − α)]−1, respectively. The activation energy and pre-exponential factor of the reduction kinetics equation in the system containing silica were significantly lower than that in the system containing alumina, which explained that the catalytic effect of silica on the reduction of calcium fluorophosphate was far greater than that of alumina. XRD and SEM/EDS analysis indicate that the solid–solid reaction of alumina, silica, iron, and fluorapatite occurred during the reduction process, while calcium aluminate, calcium silicate, and calcium oxide were formed at the contact point. Among them, iron could absorb P2 gas so that it played a greater role in promoting the reduction of fluorapatite. Increasing the reduction temperature and prolonging the reduction time were beneficial to the reduction of fluorapatite.


2012 ◽  
Vol 482-484 ◽  
pp. 1354-1357
Author(s):  
Xing Juan Wang ◽  
Ran Liu ◽  
Jue Fang

It is a good way that the fluidized bed is used as a substitute for reduction shaft in Corex process. Which can reduce energy consumption, environmental pollution and construction costs further, and also improve the competitiveness of Corex and blast furnace. At present, the sticking problem is present in iron ore reduction process and interrupts the reduction process, it has become a major obstacle on the development of fluidized bed. In this paper, a visualization hot model of fluidized bed is introduced. The influence factors on sticking behavior were analyzed from reduction temperature, gas velocity, atmosphere, degree of metallization or reduction and property of iron ore, the research provided a strong theoretical basis for controlling the sticking.


2012 ◽  
Vol 625 ◽  
pp. 243-246
Author(s):  
Shu Hua Geng ◽  
Wei Zhong Ding ◽  
Shu Qiang Guo ◽  
Xiong Gang Lu

Iron ore reduction and carbon deposition in pure CO was investigated by using thermogravimetric (TG) method over the temperature range of 0-1200°C. The results of the work may be summarized as follows: in CO stream, carbon deposition occurred below 900°C, no carbon deposition was found above 1000°C. X-Ray analysis of the reacted sample indicated that the carbon deposition occurred with the iron was reduced. The iron reduction process and carbon deposition occurred simultaneously. The rate of carbon deposition changed with the transformation of iron oxides. The specific surface area and pore structure of reduced samples were analyzed. The specific surface area changed with the amount of carbon deposition.


1986 ◽  
Vol 50 (355) ◽  
pp. 101-110 ◽  
Author(s):  
A. W. Jasiński

AbstractThe Hällefors silver deposit is regarded as a volcanogenic-exhalative iron ore deposit with dispersed amounts of Ag-Pb-Zn (±Cu) which has undergone secondary remobilization leading to the concentration of sulphides and sulphosalts. Based on data from the iron oxides and sulphides, the sulphide-sulphosalt mineralization is believed to have been formed in two stages. The first is characterized by the ranges 573-473 K and 2.25–1.5 kbar, higher gradient of changes of log aS2 with temperature and mostly sulphide precipitation; the second by the ranges 473–443 K, lower gradient of changes of log aS2 and mainly sulphosalt deposition. Assuming the precipitation was from fluids and aqueous solutions, possible conditions of formation of some of the iron minerals have been determined.


Sign in / Sign up

Export Citation Format

Share Document