Tribological Performance of Ni3Al Matrix Self-Lubricating Composites Containing Multilayer Graphene Prepared by Additive Manufacturing

2017 ◽  
Vol 27 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Zhao Yan ◽  
Xiaoliang Shi ◽  
Yuchun Huang ◽  
Xiaobin Deng ◽  
Xiyao Liu ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2237
Author(s):  
Eder H. C. Ferreira ◽  
Angela Aparecida Vieira ◽  
Lúcia Vieira ◽  
Guilhermino J. M. Fechine

Here, nanocomposites of high-molecular-weight polyethylene (HMWPE) and HMWPE-UHMWPE (80/20 wt.%) containing a low amount of multilayer graphene oxide (mGO) (≤0.1 wt.%) were produced via twin-screw extrusion to produce materials with a higher tribological performance than UHMWPE. Due to the high viscosity of both polymers, the nanocomposites presented a significant concentration of agglomerates. However, the mechanical (tensile) and tribological (volumetric loss) performances of the nanocomposites were superior to those of UHMWPE. The morphology of the nanocomposites was investigated using differential scanning calorimetry (DSC), microtomography, and transmission electron microscopy (TEM). The explanation for these results is based on the superlubricity phenomenon of mGO agglomerates. It was also shown that the well-exfoliated mGO also contained in the nanocomposite was of fundamental importance as a mechanical reinforcement for the polymer. Even with a high concentration of agglomerates, the nanocomposites displayed tribological properties superior to UHMWPE’s (wear resistance up to 27% higher and friction coefficient up to 57% lower). Therefore, this manuscript brings a new exception to the rule, showing that agglomerates can act in a beneficial way to the mechanical properties of polymers, as long as the superlubricity phenomenon is present in the agglomerates contained in the polymer.


RSC Advances ◽  
2015 ◽  
Vol 5 (55) ◽  
pp. 44618-44625 ◽  
Author(s):  
Kang Yang ◽  
Xiaoliang Shi ◽  
Wenzheng Zhai ◽  
Long Chen ◽  
Ao Zhang ◽  
...  

Anti-friction film with friction-reduction and anti-wear properties is formed under elastic deformation at the von Mises stress of 917 MPa (at 12 N).


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Y. Zhou ◽  
W. Jiang ◽  
W. Chen ◽  
X. L. Ji ◽  
Y. X. Jin ◽  
...  

The nonprotective tribolayers of the titanium alloy were modified into additives-containing tribolayers through an artificial addition of multilayer graphene (MLG), Fe2O3 nanomaterials, or their mixtures with various proportions on the titanium alloy/steel sliding interface. The sustainability of the modified tribolayers under a high load was evaluated by the critical sliding distance for a mild-to-severe wear transition. The modified tribolayers were found to significantly improve or deteriorate tribological performance of the titanium alloy, which was decided by their ingredients. The pure MLG- or Fe2O3-containing tribolayers, because of their lacking load-bearing or lubricant capacity, presented poor sustainability and readily lost protection to cause high wear loss or frictional coefficient. However, for the addition of various mixtures of MLG and Fe2O3, the modified tribolayers possessed a double-layer structure consisting of friction-reducing MLG- and wear-resistant Fe2O3-predominated layers. They presented a sustainable protection, thus remarkably improving the tribological performance of the titanium alloy.


2020 ◽  
Vol 29 (6) ◽  
pp. 3995-4008
Author(s):  
Hongyan Zhou ◽  
Xiaoliang Shi ◽  
Ahmed Mohamed Mahmoud Ibrahim ◽  
Guanchen Lu ◽  
Zhenyu Yang ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (113) ◽  
pp. 93554-93562 ◽  
Author(s):  
Zengshi Xu ◽  
Qiaoxin Zhang ◽  
Wenzheng Zhai

FESEM micrographs of cross-sections of worn surfaces of TiAl matrix self-lubricating composites filled with WS2 (a), MoO3 (b) or multilayer graphene (c).


2019 ◽  
Vol 495 ◽  
pp. 143581 ◽  
Author(s):  
Dan Zhang ◽  
Xiufang Cui ◽  
Guo Jin ◽  
Xiangru Feng ◽  
Bingwen Lu ◽  
...  

Author(s):  
Yuchun Huang ◽  
Xiaoliang Shi ◽  
Kang Yang ◽  
Jialiang Zou ◽  
Qiao Shen ◽  
...  

The elastic and plastic deformations have significant effect on the tribological properties of the graphene-reinforced Ni3Al matrix self-lubricating composites. The primary purpose of this study is to investigate the tribological behavior and wear mechanisms of graphene-reinforced Ni3Al matrix self-lubricating composites by researching the effects of different loads and the corresponding friction heat on the elastic or plastic deformation. The dry sliding tribology tests of graphene-reinforced Ni3Al matrix self-lubricating composites are carried out at the loads of 7, 10, 13, and 16N, respectively. The elastic or plastic deformation is judged by comparing the yield stress with the contact stress analyzed by the numerical simulation method. It is found that graphene-reinforced Ni3Al matrix self-lubricating composites exhibit good tribological properties at 13 N due to the elastic deformation, leading to the formation of relatively stable wear resistant layer. Graphene-reinforced Ni3Al matrix self-lubricating composites show poor tribological performance at 16 N for the plastic deformation, resulting in the destruction of the wear resistant layer and the generation of surface cracks and material spalling. From the mechanical mechanism of wear, the plastic deformation and thermal stress are the important factors to lead to the material spalling. The results could be used to guide the selection of suitable working conditions for having good tribological performance of low wear and long service life.


Sign in / Sign up

Export Citation Format

Share Document