Experimental approaches to select tree species for forest restoration: effects of light, water availability and interspecific competition in degraded areas

Author(s):  
Johanna Croce ◽  
Ernesto I. Badano ◽  
Carolina B. Trigo ◽  
Fernanda Martinez-Galvez ◽  
Andrés Tálamo
Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 458
Author(s):  
Haiyan Deng ◽  
Linlin Shen ◽  
Jiaqi Yang ◽  
Xiaoyong Mo

Background and Objectives: The stable stand structure of mixed plantations is the basis of giving full play to forest ecological function and benefit. However, the monocultural Eucalyptus plantations with large-scale and successive planting that caused ecological problems such as reduced species diversity and loss of soil nutrients have presented to be unstable and vulnerable, especially in typhoon-prone areas. The objective of this study was to evaluate the nonspatial structure difference and the stand stability of pure and mixed-Eucalyptus forests, to find out the best mixed pattern of Eucalyptus forests with the most stability in typhoon-prone areas. Materials and Methods: In this study, we randomly investigated eight plots of 30 m × 30 m in pure and mixed-Eucalyptus (Eucalyptus urophylla S. T. Blake × E. grandis W. Hill) plantations of different tree species (Neolamarckia cadamba (Roxb.) Bosser, Acacia mangium Willd., and Pinus elliottii var. Elliottii Engelm. × P. caribaea Morelet) on growth status, characterized and compared the distribution of nonspatial structure of the monoculture and mixtures, and evaluated the stand quality and stability from eight indexes of the nonspatial structure, including preservation rate, stand density, height, diameter, stem form, degree of stem inclination, tree-species composition, and age structure. Results: Eucalyptus surviving in the mixed plantation of Eucalyptus and A. mangium (EA) and in the mixed plantation of Eucalyptus and P. elliottii × P. caribaea (EP) were 5.0% and 7.6% greater than those in pure Eucalyptus plantation (EE), respectively, while only the stand preservation rate of EA was greater (+2.9%) than that of the pure Eucalyptus plantation. The proportions of all mixtures in the height class greater than 7 m were fewer than that of EE. The proportions of EA and mixed plantation of Eucalyptus and N. cadamba (EN) in the diameter class greater than 7 m were 10.6% and 7.8%, respectively, more than that of EE. EN had the highest ratio of branching visibly (41.0%), EA had the highest ratio of inclined stems (8.1%), and EP had the most straight and complete stem form (68.7%). The stand stability of the mixed plantation of Eucalyptus and A. mangium presented to be optimal, as its subordinate function value (0.76) and state value (ω = 0.61) of real stand were the largest. Conclusions: A. mangium is a superior tree species to mix with Eucalyptus for a more stable stand structure in the early growth stage to approach an evident and immense stability and resistance, which is of great significance for the forest restoration of Eucalyptus in response to extreme climate and forest management.


2014 ◽  
Vol 22 (4) ◽  
pp. 472-479 ◽  
Author(s):  
Koen W. Thijs ◽  
Raf Aerts ◽  
Pieter Van de Moortele ◽  
Winfred Musila ◽  
Hubert Gulinck ◽  
...  

2012 ◽  
Vol 22 (4) ◽  
pp. 287-298 ◽  
Author(s):  
Edgar E. Gareca ◽  
Filip Vandelook ◽  
Milton Fernández ◽  
Martin Hermy ◽  
Olivier Honnay

AbstractSeed germination is a crucial event in a plant's life cycle. Because temperature and water availability are important regulators of seed germination, this process will likely be influenced by global warming. Insight into the germination process under global warming is thus crucial, and requires the study of a wide range of water availability and temperature conditions. As hydrothermal time (HTT) models evaluate seed germination for any combination of water potential and temperature, they can be suitable to predict global warming effects on seed germination. We studied the germination characteristics of the high Andean endemic tree speciesPolylepis besseri(Rosaceae), using HTT models. We were especially interested in the potential effects of global warming on seed germination. Assembly of HTT models forP. besseriwas fairly straightforward due to the lack of a seed dormancy mechanism. The models allowed prediction ofPolylepisgermination under constant and alternating temperatures. Initially, a global warming induced increase in the field minimum and mean temperature will increaseP. besserigermination, but as maximum temperatures rise above the optimum temperature for the species, seed germination will become jeopardized. Effects of global warming on seed germination are currently considerably underexplored. HTT models prove to be useful tools to study a plant species' general germination characteristics, and how they may become affected under global warming. For the endemic mountain tree speciesP. besseri, we predict an increase, followed by a decrease of seed germination under global warming.


FLORESTA ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 070
Author(s):  
Charles Rodrigo Belmonte Maffra ◽  
Felipe Turchetto ◽  
Edison Bisognin Cantarelli

The regularization of rural properties in the molds of the New Forest Code depends on the silvicultural study of the native species of the Brazilian biomes. The objective of this study was to evaluate the initial growth of five native tree species of the Atlantic Forest, with a view to their use in forest restoration projects. The following species were produced in the nursery, planted in the field, and evaluated for performance: Araucaria angustifolia, Mimosa scabrella, Trichilia claussenii, Schizolobium parahyba, and Cordia trichotoma. These species were distributed in two different areas, based on the randomized block experimental design. In experiment 1, the species A. angustifolia, M. scabrella, and C. trichotoma were distributed in three randomized blocks, each composed of 11 plants of each species. In experiment 2, the species A. angustifolia, M. scabrella, T. claussenii, and S. parahyba were distributed in three randomized blocks, each one composed of five plants of each species. In general, S. parahyba and M. scabrella showed faster development than the other species and, in this regard, are promising candidates for forest areas constitution or reconstitution in which there is interest in obtaining economic returns in less time. Araucaria angustifolia and T. claussenii showed relatively low development, whereas C. trichotoma showed intermediate development in relation to the other species studied. Despite their differences in performance, all species proved to be suitable for use in reforestation, mainly in the region where the study was developed.


2014 ◽  
Author(s):  
Daniella Schweizer ◽  
Gregory S Gilbert ◽  
Rafael Aizprua

One approach in forest restoration is to plant trees that will establish an initial canopy to promote forest recovery through natural recruitment of other species. Here we evaluate the patterns of either phylogenetic overdispersion or phylogenetic clustering on community assembly beneath seven different single-species tree plantations. We expected the presence of negative biotic interactions between closely related overstory and recruiting tree species, as well as among related recruiting species, to lead to phylogenetic overdispersion. We found no evidence for inhibition of close relatives of the overstory tree species. However, we found more understory species than expected that were very distantly related to the overstory tree when the canopy was comprised of Fabaceae species, which lead to the presence of similar species in the understory of legume species. We found weak phylogenetic patterns among species in the understory community that suggest the presence of random processes of community assembly, maybe due to the young age of the understory communities studied.


Sign in / Sign up

Export Citation Format

Share Document