scholarly journals Different effects of the DRD4 genotype on intrinsic brain network connectivity strength in drug-naïve children with ADHD and healthy controls

Author(s):  
Shuangli Chen ◽  
Andan Qian ◽  
Jiejie Tao ◽  
Ronghui Zhou ◽  
Chuqi Fu ◽  
...  

AbstractThe dopamine D4 receptor gene (DRD4) has been consistently reported to be associated with attention-deficit/hyperactivity disorder (ADHD). Recent studies have linked DRD4 to functional connectivity among specific brain regions. The current study aimed to compare the effects of the DRD4 genotype on functional integrity in drug-naïve ADHD children and healthy children. Resting-state functional MRI images were acquired from 49 children with ADHD and 37 healthy controls (HCs). We investigated the effects of the 2-repeat allele of DRD4 on brain network connectivity in both groups using a parameter called the degree of centrality (DC), which indexes local functional relationships across the entire brain connectome. A voxel-wise two-way ANCOVA was performed to examine the diagnosis-by-genotype interactions on DC maps. Significant diagnosis-by-genotype interactions with DC were found in the temporal lobe, including the left inferior temporal gyrus (ITG) and bilateral middle temporal gyrus (MTG) (GRF corrected at voxel level p < 0.001 and cluster level p < 0.05, two-tailed). With the further subdivision of the DC network according to anatomical distance, additional brain regions with significant interactions were found in the long-range DC network, including the left superior parietal gyrus (SPG) and right middle frontal gyrus (MFG). The post-hoc pairwise analysis found that altered network centrality related to DRD4 differed according to diagnostic status (p < 0.05). This genetic imaging study suggests that the DRD4 genotype regulates the functional integration of brain networks in children with ADHD and HCs differently. This may have important implications for our understanding of the role of DRD4 in altering functional connectivity in ADHD subjects.

2021 ◽  
Vol 12 ◽  
Author(s):  
Ramana V. Vishnubhotla ◽  
Rupa Radhakrishnan ◽  
Kestas Kveraga ◽  
Rachael Deardorff ◽  
Chithra Ram ◽  
...  

Purpose: The purpose of this study was to investigate the effect of an intensive 8-day Samyama meditation program on the brain functional connectivity using resting-state functional MRI (rs-fMRI).Methods: Thirteen Samyama program participants (meditators) and 4 controls underwent fMRI brain scans before and after the 8-day residential meditation program. Subjects underwent fMRI with a blood oxygen level dependent (BOLD) contrast at rest and during focused breathing. Changes in network connectivity before and after Samyama program were evaluated. In addition, validated psychological metrics were correlated with changes in functional connectivity.Results: Meditators showed significantly increased network connectivity between the salience network (SN) and default mode network (DMN) after the Samyama program (p &lt; 0.01). Increased connectivity within the SN correlated with an improvement in self-reported mindfulness scores (p &lt; 0.01).Conclusion: Samyama, an intensive silent meditation program, favorably increased the resting-state functional connectivity between the salience and default mode networks. During focused breath watching, meditators had lower intra-network connectivity in specific networks. Furthermore, increased intra-network connectivity correlated with improved self-reported mindfulness after Samyama.Clinical Trials Registration: [https://clinicaltrials.gov], Identifier: [NCT04366544]. Registered on 4/17/2020.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yun Qin ◽  
Yanan Li ◽  
Bo Sun ◽  
Hui He ◽  
Rui Peng ◽  
...  

Cerebral palsy (CP) has long been investigated to be associated with a range of motor and cognitive dysfunction. As the two most common CP subtypes, spastic cerebral palsy (SCP) and dyskinetic cerebral palsy (DCP) may share common and distinct elements in their pathophysiology. However, the common and distinct dysfunctional characteristics between SCP and DCP on the brain network level are less known. This study aims to detect the alteration of brain functional connectivity in children with SCP and DCP based on resting-state functional MRI (fMRI). Resting-state networks (RSNs) were established based on the independent component analysis (ICA), and the functional network connectivity (FNC) was performed on the fMRI data from 16 DCP, 18 bilateral SCP, and 18 healthy children. Compared with healthy controls, altered functional connectivity within the cerebellum network, sensorimotor network (SMN), left frontoparietal network (LFPN), and salience network (SN) were found in DCP and SCP groups. Furthermore, the disconnections of the FNC consistently focused on the visual pathway; covariance of the default mode network (DMN) with other networks was observed both in DCP and SCP groups, while the DCP group had a distinct connectivity abnormality in motor pathway and self-referential processing-related connections. Correlations between the functional disconnection and the motor-related clinical measurement in children with CP were also found. These findings indicate functional connectivity impairment and altered integration widely exist in children with CP, suggesting that the abnormal functional connectivity is a pathophysiological mechanism of motor and cognitive dysfunction of CP.


Author(s):  
Roger E. Beaty ◽  
Rex E. Jung

Cognitive neuroscience research has begun to address the potential interaction of brain networks supporting creativity by employing new methods in brain network science. Network methods offer a significant advance compared to individual region of interest studies due to their ability to account for the complex and dynamic interactions among discrete brain regions. As this chapter demonstrates, several recent studies have reported a remarkably similar pattern of brain network connectivity across a range of creative tasks and domains. In general, such work suggests that creative thought may involve dynamic interactions, primarily between the default and control networks, providing key insights into the roles of spontaneous and controlled processes in creative cognition. The chapter summarizes this emerging body of research and proposes a framework designed to account for the joint influence of controlled and spontaneous thought processes in creativity.


2018 ◽  
Vol 25 (3) ◽  
pp. 377-388 ◽  
Author(s):  
Haixi Lin ◽  
Qingxia Lin ◽  
Hailong Li ◽  
Meihao Wang ◽  
Hong Chen ◽  
...  

Objective: This study aimed to explore alterations of seed-based functional connectivity (FC) in dorsal attention network (DAN), ventral attention network (VAN), and default mode network (DMN) in ADHD children. Method: A voxel-based comparison of FC maps between 46 drug-naïve children with ADHD and 31 healthy controls (HCs) and correlation analysis between connectivity features and behavior were performed. Results: Compared with the HCs, children with ADHD were characterized by hyperconnectivity between DAN and regions of DMN and by hyperconnectivity between DMN and a set of regions involved in somatosensory, visual, and auditory cortices. No significant group different FC was found between VAN and the whole brain. Higher FC between DMN and somatosensory, visual, and auditory cortex was associated with better performance in attention and executive function. Conclusion: The dysregulation of networks in children with ADHD not only involves the DAN and DMN but also the somatosensory, motor, visual, and auditory networks.


2022 ◽  
Vol 12 ◽  
Author(s):  
Penghui Song ◽  
Han Tong ◽  
Luyan Zhang ◽  
Hua Lin ◽  
Ningning Hu ◽  
...  

Generalized Anxiety Disorder (GAD) is a highly prevalent yet poorly understood chronic mental disorder. Previous studies have associated GAD with excessive activation of the right dorsolateral prefrontal cortex (DLPFC). This study aimed to investigate the effect of low-frequency repetitive transcranial magnetic stimulation (repetitive TMS, rTMS) targeting the right DLPFC on clinical symptoms and TMS-evoked time-varying brain network connectivity in patients with GAD. Eleven patients with GAD received 1 Hz rTMS treatment targeting the right DLPFC for 10 days. The severity of the clinical symptoms was evaluated using the Hamilton Anxiety Scale (HAMA) and the Hamilton Depression Scale (HAMD) at baseline, right after treatment, and at the one-month follow-up. Co-registration of single-pulse TMS (targeting the right DLPFC) and electroencephalography (TMS-EEG) was performed pre- and post-treatment in these patients and 11 healthy controls. Time-varying brain network connectivity was analyzed using the adaptive directed transfer function. The scores of HAMA and HAMD significantly decreased after low-frequency rTMS treatment, and these improvements in ratings remained at the one-month follow-up. Analyses of the time-varying EEG network in the healthy controls showed a continuous weakened connection information outflow in the left frontal and mid-temporal regions. Compared with the healthy controls, the patients with GAD showed weakened connection information outflow in the left frontal pole and the posterior temporal pole at baseline. After 10-day rTMS treatment, the network patterns showed weakened connection information outflow in the left frontal and temporal regions. The time-varying EEG network changes induced by TMS perturbation targeting right DLPFC in patients with GAD were characterized by insufficient information outflow in the left frontal and temporal regions. Low-frequency rTMS targeting the right DLPFC reversed these abnormalities and improved the clinical symptoms of GAD.


2019 ◽  
Vol 26 (4) ◽  
pp. 476-488 ◽  
Author(s):  
Alessandro d’Ambrosio ◽  
Paola Valsasina ◽  
Antonio Gallo ◽  
Nicola De Stefano ◽  
Deborah Pareto ◽  
...  

Background: In multiple sclerosis (MS), abnormalities of brain network dynamics and their relevance for cognitive impairment have never been investigated. Objectives: The aim of this study was to assess the dynamic resting state (RS) functional connectivity (FC) on 62 relapsing-remitting MS patients and 65 sex-matched healthy controls enrolled at 7 European sites. Methods: MS patients underwent clinical and cognitive evaluation. Between-group network FC differences were evaluated using a dynamic approach (based on sliding-window correlation analysis) and grouping correlation matrices into recurrent FC states. Results: Dynamic FC analysis revealed, in healthy controls and MS patients, three recurrent FC states: two characterized by strong intra- and inter-network connectivity and one characterized by weak inter-network connectivity (State 3). A total of 23 MS patients were cognitively impaired (CI). Compared to cognitively preserved (CP), CI-MS patients had reduced RS-FC between subcortical and default-mode networks in the low-connectivity State 3 and lower dwell time (i.e. time spent in a given state) in the high-connectivity State 2. CI-MS patients also exhibited a lower number and a less frequent switching between meta-states, as well as a smaller distance traveled through connectivity states. Conclusion: Time-varying RS-FC was markedly less dynamic in CI- versus CP-MS patients, suggesting that slow inter-network connectivity contributes to cognitive dysfunction in MS.


2018 ◽  
Author(s):  
Colleen Mills-Finnerty ◽  
Catherine Hanson ◽  
Stephen J Hanson

In daily life we are often forced to choose between the “lesser of two evils,” yet there remains limited understanding of how the brain encodes choices between aversive stimuli, particularly choices involving hypothetical futures. We tested how choice framing affects brain activity and network connectivity by having participants make choices about individualized, aversive, hypothetical stimuli (i.e. illnesses, car accidents, etc.) under approach and avoidance frames (“which would you rather have/avoid”) during fMRI scanning. We tested whether limbic and frontal regions show patterns of signal intensity and network connectivity that differed by frame, and compared this to response to similar appetitive choices involving appetitive preferences (i.e. hobbies, vacation destinations). We predicted that regions such as the insula, amgydala, and striatum would respond differently to approach vs. avoidance choices during aversive hypothetical choices. We identified activations for both choice frames in areas broadly associated with decision making, including the putamen, insula, and anterior cingulate, as well as deactivations in areas shown to be sensitive to valence, including the amygdala, insula, prefrontal cortex, and hippocampus. Connectivity between brain regions differed based on choice frame, with greater connectivity among deactive regions including the amygdala, insula, and ventromedial prefrontal cortex during avoidance frames compared to approach frames. These differences suggest that approach and avoidance frames lead to different behavioral and brain network response when deciding which of two evils are the lesser.


2018 ◽  
Author(s):  
Colleen Mills-Finnerty ◽  
Catherine Hanson ◽  
Stephen J Hanson

In daily life we are often forced to choose between the “lesser of two evils,” yet there remains limited understanding of how the brain encodes choices between aversive stimuli, particularly choices involving hypothetical futures. We tested how choice framing affects brain activity and network connectivity by having participants make choices about individualized, aversive, hypothetical stimuli (i.e. illnesses, car accidents, etc.) under approach and avoidance frames (“which would you rather have/avoid”) during fMRI scanning. We tested whether limbic and frontal regions show patterns of signal intensity and network connectivity that differed by frame, and compared this to response to similar appetitive choices involving appetitive preferences (i.e. hobbies, vacation destinations). We predicted that regions such as the insula, amgydala, and striatum would respond differently to approach vs. avoidance choices during aversive hypothetical choices. We identified activations for both choice frames in areas broadly associated with decision making, including the putamen, insula, and anterior cingulate, as well as deactivations in areas shown to be sensitive to valence, including the amygdala, insula, prefrontal cortex, and hippocampus. Connectivity between brain regions differed based on choice frame, with greater connectivity among deactive regions including the amygdala, insula, and ventromedial prefrontal cortex during avoidance frames compared to approach frames. These differences suggest that approach and avoidance frames lead to different behavioral and brain network response when deciding which of two evils are the lesser.


2017 ◽  
Author(s):  
Colleen Mills-Finnerty ◽  
Catherine Hanson ◽  
Stephen J Hanson

In daily life we are often forced to choose between the “lesser of two evils,” yet there remains limited understanding of how the brain encodes choices between aversive stimuli, particularly choices involving hypothetical futures. We tested how choice framing affects brain activity and network connectivity by having participants make choices about individualized, aversive, hypothetical stimuli (i.e. illnesses, car accidents, etc.) under approach and avoidance frames (“which would you rather have/avoid”) during fMRI scanning. We tested whether limbic and frontal regions show patterns of signal intensity and network connectivity that differed by frame, and compared this to response to similar appetitive choices involving appetitive preferences (i.e. hobbies, vacation destinations). We predicted that regions such as the insula, amgydala, and striatum would respond differently to approach vs. avoidance choices during aversive hypothetical choices. We identified activations for both choice frames in areas broadly associated with decision making, including the putamen, insula, and anterior cingulate, as well as deactivations in areas shown to be sensitive to valence, including the amygdala, insula, prefrontal cortex, and hippocampus. Connectivity between brain regions differed based on choice frame, with greater connectivity among deactive regions including the amygdala, insula, and ventromedial prefrontal cortex during avoidance frames compared to approach frames. These differences suggest that approach and avoidance frames lead to different behavioral and brain network response when deciding which of two evils are the lesser.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shihao He ◽  
Ran Duan ◽  
Ziqi Liu ◽  
Cai Zhang ◽  
Tian Li ◽  
...  

Abstract Background Asymptomatic carotid artery stenosis (aCAS) impairs haemodynamic and cognitive functions; however, the relationship between these changes and brain network connectivity remains largely unknown. This study aimed to determine the relationship between functional connectivity and neurocognition in patients with aCAS. Methods We compared functional status in 14 patients with aCAS and 15 healthy controls using resting state functional magnetic resonance imaging sequences. The subjects underwent a full range of neuropsychological tests and a graphical theoretical analysis of their brain networks. Results Compared with controls, patients with aCAS showed significant decline in neuropsychological functions, particularly short-term memory (word-memory, p = .046 and picture-memory, p = .014). Brain network connectivity was lower in patients with aCAS than in the controls, and the decline of functional connectivity in aCAS patients was mainly concentrated in the left and right inferior frontal gyri, temporal lobe, left cingulate gyrus, and hippocampus. Decreased connectivity between various brain regions was significantly correlated with impaired short-term memory. Patients with aCAS showed cognitive impairment independent of known vascular risk factors for vascular cognitive impairment. The cognitive defects were mainly manifested in the short-term memory of words and pictures. Conclusions This study is the first of its kind to identify an association between disruption of functional connections in left carotid stenosis and impairment of short-term memory. The findings suggest that alterations in network connectivity may be an essential mechanism underlying cognitive decline in aCAS patients. Clinical trial registration-URL Unique identifier: 04/06/2019, ChiCTR1900023610.


Sign in / Sign up

Export Citation Format

Share Document