scholarly journals Erratum to: Physiological tests for early detection of rigid ryegrass (Lolium rigidum Goud.) resistance to fenoxaprop-P

2014 ◽  
Vol 36 (4) ◽  
pp. 1051-1051
Author(s):  
Diana Saja ◽  
Magdalena Rys ◽  
Agnieszka Stokłosa ◽  
Andrzej Skoczowski
2013 ◽  
Vol 36 (2) ◽  
pp. 485-491 ◽  
Author(s):  
Diana Saja ◽  
Magdalena Rys ◽  
Agnieszka Stokłosa ◽  
Andrzej Skoczowski

Weed Science ◽  
2021 ◽  
pp. 1-19
Author(s):  
David J. Brunton ◽  
Peter Boutsalis ◽  
Gurjeet Gill ◽  
Christopher Preston

Abstract Populations of rigid ryegrass (Lolium rigidum Gaudin) from southern Australia have evolved resistance to the thiocarbamate herbicide prosulfocarb. The inheritance of prosulfocarb resistance was explored by crossing R and S individuals. In all families within each cross, except 16.2, the response of the F1 were intermediate between the parents, suggesting that resistance is inherited as a single, partially dominant trait. For 16.2, the response of the F1 was more similar to the susceptible parent, suggesting resistance may be a recessive trait in this population. Segregation at the discriminating dose of 1200 g a.i. ha−1 prosulfocarb in populations 375-14 fitted the ratio (15:1) consistent with two independent dominant alleles; 198-15 fitted a ratio (13:3) for two independent alleles, one dominant and one recessive; and EP162 fitted a ratio (9:7) for two additive dominant alleles. In contrast segregation of population 16.2 fitted a (7:9) ratio consistent with two independent recessive alleles contributing to prosulfocarb resistance. Four different patterns of resistance to prosulfocarb were identified in different resistant populations, with inheritance as a dominant allele, dominant and recessive, additive dominant and as an independent recessive allele. This suggests there are several different mechanisms of prosulfocarb resistance present in L. rigidum.


Weed Science ◽  
2005 ◽  
Vol 53 (5) ◽  
pp. 615-619 ◽  
Author(s):  
Marulak Simarmata ◽  
Suleiman Bughrara ◽  
Donald Penner

Glyphosate resistance was found in a rigid ryegrass population in northern California. A sample of the resistant plants were collected and grown under greenhouse conditions. The objective of this study was to evaluate glyphosate resistance in the progeny of the collected plants by recurrent selection, obtain the homozygous resistant and sensitive lines to establish dose-response curves, and to determine the inheritance of glyphosate resistance in rigid ryegrass. Diverse levels of resistance were observed in the first generation with survival of 89, 59, 45, and 9% from glyphosate at 1x, 2x, 4x, and 8x respectively, where x = 1.12 kg ha−1isopropylamine salt of glyphosate. Clones of plants that died from 1x were allowed to produce seed and were further subjected to recurrent selection to generate the most sensitive plants (S lines), which died from 0.125x glyphosate. The most resistant plants (R lines) were generated from the survivors receiving 8x glyphosate. The ratio between I50rates for the glyphosate resistant and the glyphosate sensitive plants was > 100-fold. The R and S lines were crossed reciprocally and F1progeny of both (R × S) and (S × R) showed intermediate resistance. These survived up to 2x glyphosate. The F2progeny were generated by intercrossing of F1plants. The ratio of sensitive, intermediate, and resistant plants in the F2population before the treatment of glyphosate at 0.125x followed by 8x was 1 : 16, 14 : 16, and 1 : 16 respectively, which corresponded to the Mendelian segregation ratio of two genes. The results indicated that the inheritance of glyphosate resistance in rigid ryegrass from California appeared to be nuclear, incompletely dominant, multigenic, and pollen-transmitted with no indication of maternal inheritance.


Weed Science ◽  
2016 ◽  
Vol 64 (2) ◽  
pp. 207-215 ◽  
Author(s):  
Rupinder Kaur Saini ◽  
Jenna Malone ◽  
Christopher Preston ◽  
Gurjeet S. Gill

Rigid ryegrass, an important annual weed species in cropping regions of southern Australia, has evolved resistance to 11 major groups of herbicides. Dose–response studies were conducted to determine response of three clethodim-resistant populations and one clethodim-susceptible population of rigid ryegrass to three different frost treatments (−2 C). Clethodim-resistant and -susceptible plants were exposed to frost in a frost chamber from 4:00 P.M. to 8:00 A.M. for three nights before or after clethodim application and were compared with plants not exposed to frost. A reduction in the level of clethodim efficacy was observed in resistant populations when plants were exposed to frost for three nights before or after clethodim application. In the highly resistant populations, the survival percentage and LD50were higher when plants were exposed to frost before clethodim application compared with frost after clethodim application. However, frost treatment did not influence clethodim efficacy of the susceptible population. Sequencing of the acetyl coenzyme A carboxylase (ACCase) gene of the three resistant populations identified three known mutations at positions 1781, 2041, and 2078. However, most individuals in the highly resistant populations did not contain any known mutation in ACCase, suggesting the resistance mechanism was a nontarget site. The effect of frost on clethodim efficacy in resistant plants may be an outcome of the interaction between frost and the clethodim resistance mechanism(s) present.


Author(s):  
Ioannis ROUSSIS ◽  
Ilias TRAVLOS ◽  
Ioanna KAKABOUKI ◽  
Spyridoula CHAVALINA ◽  
Varvara KOUNELI ◽  
...  

A pot experiment was conducted to evaluate the allelopathic potential of Nigella sativa L. on seedling emergence and first growth of the serious weed rigid ryegrass (Lolium rigidum L.). The results revealed significant weed suppressive effects of N. sativa residues incorporated into the soil. The lowest seedling emergence rate (38%) was observed in pots treated with 20 g leaf residues. Regarding height, the lowest value (26.7 cm) was found in 20 g root residues. The highest quantity of shoot residues reduced leaf number, tiller number, fresh and dry aerial biomass up to 58, 51, 64 and 59%, respectively. It can be concluded that the effect of incorporation of plant residues depended on the type and amount of residue. N. sativa could be utilized as an allelopathic crop to control weeds and future studies should focus on isolating and identifying allelochemicals in roots, shoots and leaves of this species.


Weed Science ◽  
2012 ◽  
Vol 60 (1) ◽  
pp. 101-105 ◽  
Author(s):  
Sudheesh Manalil ◽  
Roberto Busi ◽  
Michael Renton ◽  
Stephen B. Powles

A wild population of a plant species, especially a cross-pollinated species, can display considerable genetic variation. Genetic variability is evident in differential susceptibility to an herbicide because the population can show continuous phenotypic variation. Recent, recurrent selection studies have revealed that phenotypic variation in response to low herbicide rates is heritable and can result in rapid evolution of herbicide resistance in genetically variable cross-pollinated rigid ryegrass. In this study, the heritable genetic variation in an herbicide-susceptible rigid ryegrass population was exploited to shift the population toward greater herbicide susceptibility by recurrent selection. To enhance herbicide susceptibility, herbicide-susceptible rigid ryegrass plants were divided into two identical clones, and one series of cloned plants was treated with a low rate of herbicide (diclofop). The nontreated clones of individuals that did not survive the herbicide treatment were selected and bulk-crossed to obtain the susceptible progeny. After two cycles of selection, the overall susceptibility to diclofop was doubled. The results indicate that minor genes for resistance are present in an herbicide-susceptible rigid ryegrass population, and their exclusion can increase susceptibility to diclofop.


2012 ◽  
Vol 26 (2) ◽  
pp. 284-288 ◽  
Author(s):  
Samuel G. L. Kleemann ◽  
Gurjeet S. Gill

Two field experiments were undertaken at Roseworthy, South Australia from 2006 to 2007 to evaluate the performance of herbicide application strategies for the control of herbicide-resistant rigid ryegrass in faba bean grown in wide rows (WR). The standard farmer practice of applying postsowing PRE (PSPE) simazine followed by POST clethodim to faba bean grown in WR provided consistent and high levels of rigid ryegrass control (≥ 96%) and caused a large reduction (P < 0.05) in spike production (≤ 20 spikes m−2) as compared with nontreated control (560 to 722 spikes m−2). Furthermore, this herbicide combination resulted in greatest yield benefits for WR faba bean (723 to 1,046 kg ha−1). Although PSPE propyzamide used in combination with shielded interrow applications of glyphosate or paraquat provided high levels of rigid ryegrass control (≥ 93%), these treatments were unable to reduce ryegrass spike density within the crop row (20 to 54 spikes m−2) to levels acceptable for continued cropping. Furthermore, a yield reduction (13 to 29%) was observed for faba bean in treatments with shielded application of nonselective herbicides and could be related to spray drift onto lower leaves. These findings highlight that shielded interrow spraying in WR faba bean could play an important role in the management of rigid ryegrass in southern Australia. However, timing of shielded interrow applications on weed control, crop safety, and issues concerning integration with more effective early-season control strategies require attention.


Sign in / Sign up

Export Citation Format

Share Document