scholarly journals Development of a Fish Cell Culture Model to Investigate the Impact of Fish Oil Replacement on Lipid Peroxidation

Lipids ◽  
2011 ◽  
Vol 46 (8) ◽  
pp. 753-764 ◽  
Author(s):  
Melissa K. Gregory ◽  
Hamish W. King ◽  
Peter A. Bain ◽  
Robert A. Gibson ◽  
Douglas R. Tocher ◽  
...  
2019 ◽  
Author(s):  
◽  
Teresa Rachel Taylor-Whiteley

Parkinson's disease (PD) is the second most common neurodegenerative disorder, after Alzheimer's disease (AD), occurring at a rate of 0.1%-0.2% of the population. The incidence of PD increases with advancing age, affecting 1% of the population over the age of 65. Extensive loss of dopaminergic neurons and aggregation of the protein α-synuclein (α-syn) into ubiquitin-positive Lewy bodies (LBs) represents a major neuropathological hallmark of PD. The impact of LB pathology on the disease pathogenesis is still largely unknown, with evidence suggesting small soluble oligomeric assemblies that precede LB development are the causative agent in PD. At present, the generation of large nuclear-associated LBs from endogenous wildtype α-syn, translationally regulated under its own promoter in human cell culture models, requires costly and time-consuming protocols. The primary objective of this thesis was to develop a more physiologically relevant cell culture model of PD that recapitulates the development of LB inclusions. Using a cell culture model of fully differentiated human SH-SY5Y neuroblastoma cells grown in three-dimensions (3D), cells were shown to develop LB-like pathology upon exposure to exogenous α-syn species. In contrast to most cell- and rodent based PD models, which exhibit multiple diffuse α-syn aggregates throughout the cytoplasm, a single large nuclear inclusion that is immunopositive for α-syn and ubiquitin is rapidly obtained in our model. However, phosphorylation of α-syn within these inclusions was not observed. This was achieved without the need for overexpression of α-syn or genetic modification of the cell line. To further explore the mechanism of LB formation the recently discovered programmed cell death pathway ferroptosis was investigated. Ferroptosis is an irondependent cell death pathway that shares similar pathogenic features with PD including elevated iron concentration, GSH depletion, lipid peroxidation and increased ROS. However, there are currently no studies that have explored whether α-syn is involved in ferroptotic cell death. Viability assays within the 3D cell culture model following treatment with ferroptosis and apoptosis inducers and qPCR of ferroptotic targets demonstrated resistance to this mechanism of programmed cell death. Nevertheless, treatment with iron was associated with some features of ferroptosis including increased ROS, some lipid peroxidation and reduced levels of glutathione peroxidase 4 (GPX4). Phosphorylation of α-syn at serine 129 (S129) was increased upon iron treatment and reduced following treatment with a ferroptosis inhibitor, liproxstatin-1. These results demonstrate the potential implications of iron exposure, α-syn aggregation, and ferroptosis in the pathogenesis of PD. The system described in this thesis provides an ideal tool to screen compounds to intervene therapeutically in LB formation, and to investigate the mechanisms involved in disease progression in synucleinopathies.


2004 ◽  
Vol 171 (4S) ◽  
pp. 295-295
Author(s):  
Fernando C. Delvecchio ◽  
Ricardo M. Brizuela ◽  
Karen J. Byer ◽  
W. Patrick Springhart ◽  
Saeed R. Khan ◽  
...  

2016 ◽  
Vol 16 (9) ◽  
pp. 1190-1197 ◽  
Author(s):  
Dziugas Meskelevicius ◽  
Kastytis Sidlauskas ◽  
Ruta Bagdonaviciute ◽  
Julius Liobikas ◽  
Daiva Majiene

Pathogens ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Donghoon Kang ◽  
Natalia V. Kirienko

Pseudomonas aeruginosa is a multidrug-resistant, opportunistic pathogen that utilizes a wide-range of virulence factors to cause acute, life-threatening infections in immunocompromised patients, especially those in intensive care units. It also causes debilitating chronic infections that shorten lives and worsen the quality of life for cystic fibrosis patients. One of the key virulence factors in P. aeruginosa is the siderophore pyoverdine, which provides the pathogen with iron during infection, regulates the production of secreted toxins, and disrupts host iron and mitochondrial homeostasis. These roles have been characterized in model organisms such as Caenorhabditis elegans and mice. However, an intermediary system, using cell culture to investigate the activity of this siderophore has been absent. In this report, we describe such a system, using murine macrophages treated with pyoverdine. We demonstrate that pyoverdine-rich filtrates from P. aeruginosa exhibit substantial cytotoxicity, and that the inhibition of pyoverdine production (genetic or chemical) is sufficient to mitigate virulence. Furthermore, consistent with previous observations made in C. elegans, pyoverdine translocates into cells and disrupts host mitochondrial homeostasis. Most importantly, we observe a strong correlation between pyoverdine production and virulence in P. aeruginosa clinical isolates, confirming pyoverdine’s value as a promising target for therapeutic intervention. This in vitro cell culture model will allow rapid validation of pyoverdine antivirulents in a simple but physiologically relevant manner.


Toxics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 94
Author(s):  
Soisungwan Satarug ◽  
Scott H. Garrett ◽  
Seema Somji ◽  
Mary Ann Sens ◽  
Donald A. Sens

We explored the potential role of zinc (Zn) and zinc transporters in protection against cytotoxicity of cadmium (Cd) in a cell culture model of human urothelium, named UROtsa. We used real-time qRT-PCR to quantify transcript levels of 19 Zn transporters of the Zrt-/Irt-like protein (ZIP) and ZnT gene families that were expressed in UROtsa cells and were altered by Cd exposure. Cd as low as 0.1 µM induced expression of ZnT1, known to mediate efflux of Zn and Cd. Loss of cell viability by 57% was seen 24 h after exposure to 2.5 µM Cd. Exposure to 2.5 µM Cd together with 10–50 µM Zn prevented loss of cell viability by 66%. Pretreatment of the UROtsa cells with an inhibitor of glutathione biosynthesis (buthionine sulfoximine) diminished ZnT1 induction by Cd with a resultant increase in sensitivity to Cd cytotoxicity. Conversely, pretreatment of UROtsa cells with an inhibitor of DNA methylation, 5-aza-2’-deoxycytidine (aza-dC) did not change the extent of ZnT1 induction by Cd. The induced expression of ZnT1 that remained impervious in cells treated with aza-dC coincided with resistance to Cd cytotoxicity. Therefore, expression of ZnT1 efflux transporter and Cd toxicity in UROtsa cells could be modulated, in part, by DNA methylation and glutathione biosynthesis. Induced expression of ZnT1 may be a viable mechanistic approach to mitigating cytotoxicity of Cd.


Author(s):  
Elisabeth Dohmann Chang ◽  
Raewyn M. Town ◽  
Stewart F. Owen ◽  
Christer Hogstrand ◽  
Nic R. Bury

Sign in / Sign up

Export Citation Format

Share Document