FA monoalkylesters from rice bran oil by in situ esterification

2003 ◽  
Vol 80 (1) ◽  
pp. 81-84 ◽  
Author(s):  
Sevil Özgül-Yücel ◽  
Selma Türkay
2019 ◽  
Vol 964 ◽  
pp. 97-102
Author(s):  
Siti Zullaikah ◽  
Sri Utami ◽  
Rifky Putra Herminanto ◽  
M. Rachimoellah

In-situ transesterification method without catalysts to produce biodiesel (fatty acid ethyl esters, FAEE) from rice bran using subcritical water ethanol mixture has been investigated. This method was found to be efficient since the rice bran oil (RBO) extraction and reaction of RBO into FAEE occur simultaneously. In this process other chemical (ethyl levulinate, EL) was also formed along with FAEE. EL can be used to improve the biodiesel quality by improving the low temperature properties of biodiesel. In this study effect of co-solvent types (without co-solvent, ethyl acetate, chloroform, and n-hexane) and water ethanol ratio (20%, 40%, 50%, 60% and 80%, v/v) on the content and yield of FAEE and EL at subcritical water ethanol mixture (T= 160°C, P= 80 bar, and t= 2 h) were investigated systematically. The content and yield of FAEE and EL obtained was found to be affected by the type of co-solvent. The content of FAEE and EL obtained without co-solvent (ethanol and water polarity index were PI=5.2 and PI=10.2, respectively) and with co-solvent of ethyl acetate (PI= 4.4), chloroform (PI= 4.1) and n-hexane (PI= 0.1) were 55.80% and 3.92%, 68.63% and 1.15%, 65.56% and 2.14%, and 62.00% and 0.93%, respectively. Higher polarity index of co-solvent extracted more RBO, as consequent the yield of FAEE (79.79%) obtained was higher using ethyl acetate as co-solvent. This data also suggested that RBO contains more free fatty acids (FFA= 63.59%) rather than of triglycerides (TG= 24.94%).The content and yield of FAEE and EL decreased with increasing water ethanol ratio. The highest content of FAEE (60.57%) and EL (8.48%) and yield of FAEE (78.03%) and EL (10.92%) were obtained using water ethanol ratio of 20%, v/v.


2019 ◽  
Vol 964 ◽  
pp. 234-239
Author(s):  
Siti Zullaikah ◽  
Sri Utami ◽  
Rifky Putra Herminanto ◽  
M. Rachimoellah

In-situ transesterification method without catalysts to produce biodiesel (fatty acid ethyl esters, FAEE) from rice bran using subcritical water ethanol mixture has been investigated. This method was found to be efficient since the rice bran oil (RBO) extraction and reaction of RBO into FAEE occur simultaneously. In this process other chemical (ethyl levulinate, EL) was also formed along with FAEE. EL can be used to improve the biodiesel quality by improving the low temperature properties of biodiesel. In this study effect of co-solvent types (without co-solvent, ethyl acetate, chloroform, and n-hexane) and water ethanol ratio (20%, 40%, 50%, 60% and 80%, v/v) on the content and yield of FAEE and EL at subcritical water ethanol mixture (T= 160°C, P= 80 bar, and t= 2 h) were investigated systematically. The content and yield of FAEE and EL obtained was found to be affected by the type of co-solvent. The content of FAEE and EL obtained without co-solvent (ethanol and water polarity index were PI=5.2 and PI=10.2, respectively) and with co-solvent of ethyl acetate (PI= 4.4), chloroform (PI= 4.1) and n-hexane (PI= 0.1) were 55.80% and 3.92%, 68.63% and 1.15%, 65.56% and 2.14%, and 62.00% and 0.93%, respectively. Higher polarity index of co-solvent extracted more RBO, as consequent the yield of FAEE (79.79%) obtained was higher using ethyl acetate as co-solvent. This data also suggested that RBO contains more free fatty acids (FFA= 63.59%) rather than of triglycerides (TG= 24.94%). The content and yield of FAEE and EL decreased with increasing water ethanol ratio. The highest content of FAEE (60.57%) and EL (8.48%) and yield of FAEE (78.03%) and EL (10.92%) were obtained using water ethanol ratio of 20%, v/v.


2020 ◽  
Vol 11 (3) ◽  
pp. 375-382
Author(s):  
Yustia Wulandari Mirzayanti ◽  
◽  
Ayu Alisa ◽  
Devita Sari

In this study, biodiesel is made from rice bran vegetable oil. Biodiesel production was carried out by the in-situ method using two-sides using sulfuric acid catalysts and CaO/hydrotalcite. The solvent used was methanol as an oil component in the material and a reactant in the formation of FAME and n-hexane as a solvent to increase the yield of rice bran oil extraction. CaO/hydrotalcite to the yield of biodiesel produced and composition of biodiesel at the highest yield. As much as 50 grams of rice bran was put into a three-neck flask, then 50 ml of n-hexane were added. Next, 1 ml mixture of a sulfuric acid catalyst and 250 ml of methanol were added. Then, the mixture was reacted at 65º. Add stirring to 600 rpm for 90 minutes. Reheating after 90 minutes and a sample of 2.5 grams was taken for FFA testing. Next, the CaO/hydrotalcite catalyst in 10 ml of methanol with a mass variation of 1; 1,5; and 2 grams are added to the reaction flask. The mixture was reacted again at a temperature of 65 ºSuitably stirrings 600 rpm for 90 minutes. Based on the BET test results, the CaO/hydrotalcite catalyst surface area was 200.13 m2/g. The best results obtained on CaO/hydrotalcite catalysts were 2 grams with a biodiesel yield of 9.56%. In the highest biodiesel yield, the FAME component is preferred over the oleic acid methyl ester composition with an area of 35.09% at a retention time of 19.14 min.


2017 ◽  
pp. 15-21
Author(s):  
Thi Minh Nguyet Le ◽  
Thi Kim Lien Phan

Background and Objectives: For a long time, Asian women have known to use rice water, rice bran for skin care, lightening dark spots and slowing down the aging process. Gamma Oryzanol, an ester mixture of trans-ferulic acid with phytosterols and triterpene alcohols extracted from rice bran oil, has been shown to have beneficial effects on the skin, especially its antioxidant and anti-aging effect. The aims of this research were to formulate Gamma Oryzanol-loaded anti-aging cream and to evaluate the product quality. Materials and Methods: Gamma Oryzanol was imported from Japan. Some formulation parameters such as emulsifi-ers, performance modifiers were investigated and the product quality was evaluated according to the criteria of drugs and cosmetics. Results: The excipients were chosen including 1% (w/w) of Lunamer with 3% (w/w) of Prolipid as emulsifiers and 8% (w/w) of mango seed butter as a state modifier in the formulation of Gamma Oryzanol anti-aging cream. The cream is ivory-white, thick, smooth, fragrant-smelling and satisfied all criteria of developed specification. Conclusion: The study was successful in the preparation of Gamma Oryzanol anti-aging cream. Key words: Gamma Oryzanol, anti-aging cream, Franz cells.


Sign in / Sign up

Export Citation Format

Share Document