DSC study on the melting properties of palm oil, sunflower oil, and palm kernel olein blends before and after chemical interesterification

2006 ◽  
Vol 83 (8) ◽  
pp. 739-745 ◽  
Author(s):  
Noor Lida Habi Mat Dian ◽  
Kalyana Sundram ◽  
Nor Aini Idris
2016 ◽  
Vol 78 (11-2) ◽  
Author(s):  
Norizzah Abd Rashid ◽  
Nur Azimah Kamarulzaman ◽  
Zaliha Omar

Palm oil (PO) and palm kernel oil (PKO) have different chemical composition and physical properties. Both oils have limited application in their natural form. To widen their commercial values, PO and PKO were modified by blending and subsequently followed by interesterification (IE). Interesterification is the rearrangement of fatty acids within and among different triacylglycerols, using enzyme or chemical as the catalysts. Palm oil with iodine value (IV) of 52.6 and PKO (IV = 17.5) were mixed in different ratios from 25:75 to 75:25 (%wt/wt) at 25% increment. The blends were subjected to chemical and enzymatic interesterification using sodium methoxide and Lipozyme TL IM as catalysts, respectively. The effects of chemical and enzymatic interesterification on the triacylglycerols (TAG) composition, thermal properties, solid fat content (SFC) and slip melting point (SMP) were investigated.  Chemical interesterification (CIE) caused significant changes in the TAG composition of the oil blend compared to enzymatic interesterification (EIE). This changes led to a significantly higher (p<0.05) SMP for the chemically-interesterified than the enzymatically-interesterified blends. The differential scanning calorimetry (DSC) melting thermograms confirmed that harder product with higher final complete melting temperature was obtained from the chemically-interesterified blends. Similar SFC profiles for all oil blends were observed with steep SFC slopes for blend with high proportion of PKO. Chemical interesterification reduced the eutectic interactions that occurred at 5 to 25°C in the non-interesterified and enzymatically-interesterified blends. Thus, CIE caused significant changes in physicochemical properties of the PO and PKO blends compared to EIE. Results from this study could improve the existing PO and PKO properties and widen their usage in food and non-food applications.


2020 ◽  
Vol 37 (4) ◽  
pp. 773-782
Author(s):  
Ormindo Domingues Gamallo ◽  
Hélio Fernandes Machado Júnior ◽  
Mário Geraldo de Carvalho ◽  
Tatiana Saldanha

2019 ◽  
Vol 57 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Erminda Tsouko ◽  
Maria Alexandri ◽  
Keysson Vieira Fernandes ◽  
Denise Maria Guimarães Freire ◽  
Athanasios Mallouchos ◽  
...  

The side streams derived from the palm oil production process, namely palm kernel cake, palm pressed fibre, palm kernel shells and empty fruit bunches, were evaluated as sources of phenolic compounds. Among these streams, kernel cake had the highest total phenolic content (in mg of gallic acid equivalents (GAE) per g of dry sample) with a value of 5.19, whereas the empty fruit bunches had the lowest value (1.79). The extraction time and liquid-to-solid ratio were investigated to optimize the phenolic extraction. Kernel cake exhibited the highest total phenolic content (5.35 mg/g) with a liquid-to-solid ratio of 40:1 during 20 min of extraction. The main phenolic compounds of the extracts deriving from all byproduct streams were also identified and quantified with HPLC-DAD. Pyrogallol, 4-hydroxybenzoic acid, gallic acid and ferulic acid were the main compounds found in kernel cake extracts. Empty fruit bunch and pressed fibre extracts were also rich in 4-hydroxybenzoic acid, while pyrogallol was the predominant compound in kernel shell extracts. All extracts showed antioxidant activity as it was indicated from the results of DPPH analysis and subsequently tested in sunflower oil aiming to prolong its shelf life. The addition of 0.8 % kernel cake extract increased the induction time of sunflower oil more than 50 %. According to the results obtained in this study, kernel cake extracts could be considered as a value-added co-product with a potential application as antioxidants in the food industry.


1999 ◽  
Vol 82 (2) ◽  
pp. 97-104 ◽  
Author(s):  
Anette Pedersen ◽  
Peter Marckmann ◽  
Brittmarie Sandström

There is increasing evidence that the degree of postprandial lipaemia may be of importance in the development of atherosclerosis and IHD. Postprandial lipid, lipoprotein, glucose, insulin and non-esterified fatty acid (NEFA) concentrations were investigated in eleven healthy young males after randomized ingestion of meals containing rapeseed oil, sunflower oil or palm oil with or without a glucose drink. On six occasions each subject consumed consecutive meals (separated by 1·75 h) containing 70 g (15 g and 55 g respectively) of each oil. On one occasion with each oil 50 g glucose was taken with the first meal. One fasting and fifteen postprandial blood samples were taken over 9 h. There were no statistically significant differences in lipoprotein and apolipoprotein responses after rapeseed, sunflower and palm oils, whereas insulin responses were lower after sunflower oil than after rapeseed oil (ANOVA, P = 0·04). The NEFA and triacylglycerol concentrations at 1·5 h were reduced when 50 g glucose was taken with the first meal (ANOVA, P < 0·0001 and P < 0·05 respectively), regardless of meal fatty acid composition. In conclusion, the consumption of glucose with a mixed meal containing either rapeseed, sunflower or palm oil influenced the immediate triacylglycerol and NEFA responses compared with the same meal without glucose, whereas no significant effect on postprandial lipaemia after a subsequent meal was observed. The fatty acid composition of the meal did not significantly affect the lipid and lipoprotein responses, whereas an effect on insulin responses was observed.


Sign in / Sign up

Export Citation Format

Share Document