Chemical Composition, Anti-oxidant, and Antimicrobial Activities of Four Saline-Tolerant Plant Seed Oils Extracted by SFC

2016 ◽  
Vol 93 (9) ◽  
pp. 1173-1182 ◽  
Author(s):  
Qi Wei ◽  
Yue Wei ◽  
Haiwen Wu ◽  
Xiuyan Yang ◽  
Huangli Chen ◽  
...  
2019 ◽  
Author(s):  
A Filip ◽  
I Boz ◽  
S Dunca ◽  
G-A Ștefan ◽  
M-M Zamfirache

Author(s):  
Ann Kiplagat Jepkorir ◽  
Charles Maina Irungu ◽  
Philip Bett Kendagor

All parts of A. indica (neem) and R. communis (castor) plants have mostly been used as natural remedies in the control and treatment of several ailments, control of pests and insects, animal feeds and production of industrial products globally. The seed oils of A. indica and R. communis are known to have antidiabetic, anti-helminthic, antifertility, antioxidant, antibacterial, anti-inflammatory, anti-cancer, insecticidal and mosquitocidal activity. This study reports for the first time the chemical composition of A. indica and R. communis seed oils from Marigat, Baringo County, Kenya. Seed oils of A. indica and R. communis were   extracted from mature dried seeds through cold pressing and boiling respectively and chemical composition determined using Gas Chromatography (GC)-Mass Spectrometry (MS).  The constituents of both seed oils were dominated by saturated and unsaturated fatty acids, cyclic esters and methyl esters. The predominant constituents of R. communis were (Z)-6-Octadecenoic acid (37.33%), Ricinoleic acid (30.22%) and 13-Hexyloxacyclotridec-10-en-2-one (26.67%) while those of A. indica were 2-hexyl-1-decanol (30.97%), Octadecanoic acid (29.69%) and Oxalic acid, 6-ethyloct-3-yl ethyl ester (15.55%). Oils contained Hexadecanoic acid and Octadecanoic acid which are used in the manufacture of several products such as candles, soaps, lotions, perfumes and cosmetics. Octadecenoic acid is important in control of human diseases and Ricinoleic acid in production of alkyd resins for surface coating and biofuel.  From the results, A. indica and R. communis seed oils constituents have potential in the agricultural, industrial, comestics and pharmaceutical sectors but require further fractionation to isolate the bioactive compounds.


2020 ◽  
Vol 10 (3) ◽  
pp. 272-278
Author(s):  
Ardalan Pasdaran ◽  
Satyajit D. Sarker ◽  
Lutfun Nahar ◽  
Azadeh Hamedi

Background: The essential oil from the Acantholimon genus have been an integral part of the traditional food additive in Middle East. Most of the plants in Acantholimon genus have not been studied scientifically. The aim of this study is to investigate the chemical composition, antibacterial, insecticidal and anti-oxidant activities of three Acantholimon species including Acantholimon atropatanum, A. gilliatii and A. tragacanthium. Method: The essential oils of the aerial parts were extracted by hydrodistillation. Chemical constitutions were identified by gas chromatography- mass spectroscopy technique, also their toxicities were assessed against the two important grain products pests, Oryzeaphilus mercator and Tribolium castaneum. Antibacterial activity was assessed against the three foodborne bacteria that include Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus based on the disc diffusion assay. Free-radical-scavenging property was identified based on 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. Results: 2-hexahydrofarnesyl acetone was the main compound in A. gilliatii and A. tragacanthium, whilst farnesyl acetone, heptacosane and germacrene D were the principal components of A. atropatanum essential oil. These oils exhibited 40-90% mortality of O. mercator and/or T. castaneum at a dose of 12 μl/l air after 48h of exposure, and exhibited significant free-radicalscavenging property (RC50 = 3.7 × 10-3 - 8.3 × 10-3 mg/ml). The oils of A. tragacanthium and A. gilliatii showed a weaker antibacterial activity compared to A. atropatanum. Conclusion: A. atropatanum, A. gilliatii and A. tragacanthium essential oils had significant insecticidal and anti-oxidant properties. They also showed week to moderate antibacterial activity against P. aeruginosa and S. aureus.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 703
Author(s):  
Severino Zara ◽  
Giacomo L. Petretto ◽  
Alberto Mannu ◽  
Giacomo Zara ◽  
Marilena Budroni ◽  
...  

The production of saffron spice generates large quantities of plant by-products: over 90% of the plant material collected is discarded, and a consideration fraction of this waste is plant stamens. This work investigated the chemical composition and the antimicrobial activities of the non-polar fraction extracted from four different saffron flower stamens. The chemical composition of ethereal extracts of the saffron stamens was qualitatively assessed by means of gas–chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) analyses. These analyses revealed ethereal extracts to possess a high polyunsaturated fatty acid content. In vitro antibacterial activity of stamen extracts showed no large differences between Gram-positive and Gram-negative bacteria in terms of minimal inhibitory concentration (MIC). In food matrix microbial analysis of the bacterial strains belonging to the main foodborne pathogen species, including Staphylococcus aureus DSM 20231, Escherichia coli DSM 30083, and Listeria monocytogenes DSM 20600, using low-fat UHT milk, revealed a statistically significant reduction in the number of cells (particularly for E. coli and S. aureus with a complete elimination of the population of the two target bacteria following incubation in diethyl ether extracts of saffron stamen (DES) at high concentrations tested, both at 37 °C and 6 °C (for 48 h and 7 days, respectively). A synergic effect was observed when the pathogens were incubated at 6 °C with DES. This work shows these by-products to be excellent sources of bioactive compounds, which could be exploited in high-added-value products, such as food, cosmetics, and drugs.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 781
Author(s):  
Jaturong Kumla ◽  
Nakarin Suwannarach ◽  
Keerati Tanruean ◽  
Saisamorn Lumyong

Tropical black bolete, Phlebopus portentosus, provides various nutritional benefits and natural antioxidants to humans. In this study, the chemical composition, phenolic compounds, and antioxidant and antimicrobial activities of fresh mushroom samples and samples stored for a period of one year using different preservation methods (drying, brining, and frozen) were investigated. The results indicated that the brining method significantly reduced the protein and fat contents of the mushrooms. The polyphenol and flavonoid contents of the frozen sample were not significantly different from that of the fresh sample. The results revealed that an inhibition value of 50% (IC50) for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay of the extract of the dried and frozen samples was not statistically different from that of the fresh sample. The IC50 value of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay and ferric reducing antioxidant power (FRAP) value in the extract of the frozen sample were not found to be significantly different from those of the fresh sample. Furthermore, the lowest degree of antioxidant activity was found in the extract of the brined sample. Additionally, the antimicrobial activities of the extracts of the fresh and frozen samples were not significantly different and both extracts could have inhibited the growth of all tested Gram-positive bacteria and Pseudomonas aeruginosa.


2020 ◽  
Vol 15 (12) ◽  
pp. 1934578X2098123
Author(s):  
Peng-fei Yang ◽  
Hui Lu ◽  
Qiong-bo Wang ◽  
Zhi-wei Zhao ◽  
Qiang Liu ◽  
...  

Detailed chemical constituents of essential oil from the Pterocephalus hookeri leaves and its antimicrobial activities were investigated in this study. The essential oil, obtained by hydrodistillation, was characterized by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry analyses. Among the 90 identified compounds, hexadecanoic acid (21.27%), phytol (8.03%), furfural (7.08%), oleic acid (5.25%), and phytone (4.56%) were the major components. In the antimicrobial assay, the essential oil showed strong inhibitory activities against Escherichia coli, Candida albicans, and Staphylococcus aureus with minimum inhibitory concentration values of 31.3, 62.5, and 125 µg/mL, respectively. To our knowledge, this is the first report concerning chemical composition and antimicrobial activities of the essential oil from Pterocephalus hookeri.


1940 ◽  
Vol 61 (12) ◽  
pp. 1288-1291 ◽  
Author(s):  
Chuta HATA ◽  
Tatsuki KUNISAKI
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document